Display Industry Technology News Roundup 8.14.2015
Friday, August 14, 2015
Display Alliance in Apple, Capacitive touch, Flexible display, Heads up display, Industrial display, LCD, LG, News Roundup, Pixels, Projected capacitive, Quantum dots, Sapphire, Touchscreen

Image via Google / Project Jacquard

Google and Levi's Team Up For Touch-Screen Enabled Clothing "Google and Levi Strauss have teamed up for a new project called Project Jacquard, named after a Frenchman who has invented a type of loom. This new initiative will be designed and spearheaded by a small Google team called Advanced Technology and Projects (ATAP) and is taking touch screen to another level by developing touch screen enabled clothes. The touch controls will weave "interactive" textiles right into your clothes, giving any garment the ability to communicate with other gadgets and operate just like a touch screen device. “We are enabling interactive textiles,” the ATAP's own Emre Karagozler stated as part of their announcement. “We do it by weaving conductive threads into fabric.” “It is stretchable; it is washable,” he added. “It is just like normal fabric.”" via Shalom Life

How recycling LCD screens could solve rare metal shortage "The team from the School of Environment of Tsinghua University in Beijing tested 18 methods for removing indium from discarded LCD screens and displays. The methods involved crushing and grinding the LCD glass into particles less than 75 micrometres in size. The researchers then soaked the particles in a sulphuric acid solution at a temperature of 50 ºC. ...With the electronics industry selling millions of gadgets equipped with LCD screens, displays and panels of various sizes every year, there could easily be supply problems within the next 20 years if a sustainable way of indium recycling is not developed, some estimates suggest." via E&T Magazine

LG Display shows off press-on 'wallpaper' TV under 1mm thick "The 55-inch OLED (organic light-emitting diode) display weighs 1.9 kilograms and is less than a millimeter thick. Thanks to a magnetic mat that sits behind it on the wall, the TV can be stuck to a wall. To remove the display from the wall, you peel the screen off the mat. The unveiling was part of a broader announcement by LG Display to showcase its plans for the future. The company said its display strategy will center on OLED technology." via CNET

"Always-on" Color Memory LCD is Ideal Graphic Display for Wearable Products "Sharp Microelectronics of the Americas (SMA) has unveiled its 1.33-inch (diagonal) Color Memory LCD graphics display. The 8-color LCD module has ultra-low power consumption, enabling longer time between recharges for small-display products with a battery. It also enables designers to meet the growing demand for "always-on" devices – e.g., products such as smartwatches that show a full array of data at a glance without need to "fire-up" the device. The high-resolution display (LS013B7DH06) delivers smooth graphics and simple video capability, thus showcasing richer content than many cholesteric, electrophoretic, and other bi-stable, "e-ink" type display solutions – all with lower energy requirements. Transmissivity allows addition of a backlight for visibility in low ambient light." via PR Newswire

Sharp to Explore Options for LCD Panel Business "Sharp Corp. said it would seek external help to prop up its LCD panel-making business and plans to quit selling televisions in the U.S. and much of the rest of North and South America, as the electronics company steps up its turnaround plan aimed at ending steep losses. ...In withdrawing from the TV business in the Americas, Sharp will sell much of its North and South America TV operations, with the exception of Brazil, to Hisense Co., a Chinese manufacturer. Sharp had a 4.6% share in the North America TV market, far behind market leader Samsung’s 35.1%, according to research company IHS." via WSJ

Samsung creates "transparent" truck display "When driving behind big semi-trailers, people regularly take risks overtaking them because they often have to first move out from behind the truck to see if the road ahead is clear before passing. This is particularly dangerous on single-lane highways because such a maneuver can mean driving into the path of oncoming traffic. Now Samsung Electronics has come up with a way to help reduce this problem by mounting cameras on the front of a truck and large screens on the rear to display to following drivers a clear view of the road ahead. Like the See-Through System we wrote about in 2013, the prototype video system on "Safety Truck" comprises a front-mounted camera to capture view of the road ahead of the truck. Rather than wirelessly send a live feed to a transparent LCD screen installed in a trailing driver's car, Samsung's solution transmits a continuous view of the road in front of the truck to exterior monitors mounted on the rear. (Video)" via Gizmag

Shape-shifting display projects objects out of TV screens using ultrasound levitation "The shape-changing display breakthrough is part of the Generic, Highly-Organic Shape-Changing Interfaces (GHOST) project and is the product of three years of research by the University of Copenhagen, the University of Bristol, Lancaster University and Eindhoven University of Technology. As glass cannot be bent as it will break, the researchers instead made a flatscreen display out of Lycra, which can be deformed at will. When a finger presses in on the display, a camera captures 3D depth data of the position and pressure of the finger on the screen. The researchers have developed computer algorithms that are able to detect and understand the depth information from the screens when a hand pulls at the display, as opposed to a glass screen display like an iPad, which has technology that only detects the limited area of a fingertip pressing on the glass in 2D." via International Business Times

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Researchers develop the first skin-like flexible display "A research team from the University of Central Florida, led by Professor Debashis Chanda, has developed the first-ever skin-like colour display, which is thin and flexible enough to be used alongside fabrics. The research team’s technique could open the door to thin, flexible, full-color displays that could be built into plastics and synthetic fabrics. The technology is only a few micrometres (um) thick. That is considerably smaller than a human hair, which is typically around 0.1mm thick." via Android Authority

Samsung Display Introduces First Mirror and Transparent OLED Display Panels "The new Samsung Display OLED panel technology provides a digital viewing platform for making the consumer purchasing experience more visually engaging. When Samsung’s OLED display technology is integrated with Intel® Real Sense™ technology, a visually compelling, interactive closet or “self-modeling” wardrobe is created that can enable consumers to virtually “see” clothes or other retail items from an extremely realistic, customized perspective. Together, the two technologies create a “virtual fitting room” that will be used to help consumers vividly see themselves wearing clothing apparel, shoes or jewelry that they might wish to buy. Once retailers like Chow Sang Sang adopt the combined Samsung-Intel “personalization” virtual imaging solution, consumers will be able to go to leading stores around the world to see retail items in ways that will greatly enhance point-of-purchase shopping as we know it today." via BusinessWire

How the world’s first white laser could revolutionize lighting and display tech "Incandescent bulbs have given way to CFL and LEDs, but these lighting technologies may be destined for extinction as well. A team of scientists at Arizona State University have developed a laser that can produce pure white light that is brighter and more efficient than even the best LEDs. Technically, the laser itself isn’t white from the start, but the clever use of nanomaterials allows three colored beams to become one white beam. Lasers have always had appeal for lighting technology as they’re very bright, work over long distances, and have high efficiency. The problem has always been that lasers can’t be white. This work builds on a laser created in 2011 at Sandia National Laboratories. However, that was merely a proof of concept, not a functional device. The ASU team’s white laser produces enough light that it’s visible to the human eye. That’s a step in the right direction." via ExtremeTech

E-paper display gives payment cards a changing security code "Using payment cards with an embedded chip makes payments more secure in physical stores, but it's still relatively easy for criminals to copy card details and use them online. Oberthur's Motion Code technology replaces the printed 3-digit CVV (Card Verification Value) code, usually found on the back of the card, with a small screen, where the code changes periodically. Today, any criminal who has seen a card or overheard the owner dictating the CVV code can make an unauthorized purchase online or by phone. With Motion Code, because the CVV changes from time to time, the time a fraudster has to act is reduced." via Computerworld

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

LG scales up In-Cell technology for thinner touchscreen laptop displays "With the launch of Windows 8 and its awful Start screen interface, we also got an influx of touch-enabled laptops and convertibles. It was a nice feature you could happily ignore if you so wished, but it does add a little extra bulk to the display because a touchscreen requires a touch layer in the panel. However, LG is about to fix that by scaling up the touchscreen tech used in its smartphones. The technology in question is called Advanced In-Cell Touch (AIT). What it does is remove the need for a separate touch layer by integrating the touch sensor directly into the LCD panel. You no longer need to add the touch panel on top of the LCD, it instead comes as standard and reduces the thickness (by 1mm) and weight (by 200 grams) of the finished display." via Geek

Apple Watch Sapphire vs Glass Display "The world’s best [and most expensive] watches all have a sapphire crystal because sapphire is incredibly hard, making them extremely scratch resistant and almost scratch proof under normal use. But sapphire is fairly expensive, so most watches instead have a glass crystal, which isn’t as hard or scratch resistant as sapphire, but still holds up pretty well. But is there a visual difference between a watch that uses sapphire versus glass? If you were to hold up two identical watches side-by-side, the one with a glass crystal would be about 20 percent brighter than the one with sapphire (due to fundamental principles of optics that reduce its light transmission), so it appears somewhat darker and duller, particularly because the light has to pass through the crystal twice. There are some new upcoming advanced technologies that can make significant improvements on this issue that we’ll mention below. The above discussion is for traditional watches, which work by reflecting ambient light off the watch face that lies below the crystal. On the other hand, the visual consequences from using sapphire and glass are considerably greater when they are used on displays, including smartphones and smart watches, because minimizing screen reflections is especially important for displays, and sapphire has almost double (191%) the Reflectance of glass, which we consider next…" via DisplayMate

Researchers' 'Fairy Lights' Promise Floating, Touchable Laser Displays "As the researchers explain in their paper, an earlier incarnation of the technology relied on a nanosecond laser to create bursts of plasma that, when fired in rapid succession, can effectively act as a floating display. The problem, as IEEE Spectrum notes, is that while those plasma bursts can deliver tactile feedback, they can also burn you. The latest version developed by the researchers, on the other hand, uses a femtosecond laser to create a similar type of floating plasma display that's safe to touch. And while it won't burn you, the plasma will apparently still generate "shock waves" that will let you feel an "impulse on the finger as if the light has physical substance."" via Tech Times

Could this could be the big OLED breakthrough we've been waiting for? "But a joint venture by Fujifilm and nano-electronics research institute, imec, might well have turned up a more cost-effective method of producing high-resolution, big-screen OLED displays. This pairing produced photoresist technology for organic semiconductors back in 2013 and they have recently demoed full-colour OLEDs using that photoresist tech. It's a different method of producing OLED displays compared with Samsung's Full Metal Masking (FMM) tech and LG's white OLED (WOLED) with colour filters. The research is most encouraging though because it uses an OLED patterning setup that uses standard lithography tools in its manufacture." via TechRadar

Facebook’s Oculus to Pay About $60 Million for Gesture-Control Firm Pebbles "Pebbles has recently integrated its technology into the virtual-reality headset developed by Facebook’s Oculus VR, enabling users to interact with the device via hand and finger gestures. Unlike competing gesture-identification technologies, Pebbles’ enables users to see images of their own arms and hands in their virtual-reality display. In some other technologies, users can’t “see” their bodies, or only see generic digitally-generated versions. Pebbles’ technology can show unique features like clothing, scars or items held in one’s hand." via WSJ

Apple might be bringing fighter-jet technology to car windshields "The world’s most valuable company is “very likely” working on a 27- to 50-inch head-up display, a technology most famously used by jet pilots, that could project vivid icons and information for drivers while on the road, a tech analyst with Global Equities Research said Thursday morning. The curved-glass screen could also be wired with sensors and “may be completely gesture-controlled,” a stealth project that analyst Trip Chowdhry said could be Apple’s “next generation” device, after gadgets such as the iPhone, iPad and Apple Watch." via Washington Post

Switchable holographic pixel elements for 3D displays "Many so-called 3D display technologies rely on optical tricks, such as stereoscopy and reflective prisms, to give the illusion of depth. However, holograms can record, and display, all the information of the original light field using optical interference so that there is no visible difference between the optical information in the displayed image and the real-world scene. Hence the display is a true 3D view into the world (see Figure 1).1 Such an ideal 3D holographic display requires an array of multifunctional, highly dense pixels working in unison to encode phase, amplitude, wavelength, and polarization information yet with dimensions similar to visible wavelengths." via SPIE

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

Are quantum dots ‘ready for prime time’? Analyst says yes "Until OLEDs are ready, says Yole, “QD-LCD technology will have a unique window of opportunity to try to close enough of the performance gap such that the majority of consumers will not be able to perceive the difference between the two technologies so price would become the driving factor in the purchasing decision.” Under this scenario, the analyst believes that QD-LCD could establish itself as the dominant technology while struggling OLEDs “would be cornered into the high end of the market.” Yole acknowledges that OLED-based displays potentially offer more opportunities for differentiation but the analyst notes, “OLED proponents need to invest massively and still have to resolve manufacturing yield issues. For tier-2 LCD panel makers who cannot invest in OLED, Quantum Dots offer an opportunity to boost LCD performance without imposing additional CAPEX on their fabs.” At this year’s Consumer Electronics show, as optics.org reported, no fewer than seven leading TV OEMs including Samsung and LG demonstrated QD-LCD TVs." via Optics.org

The impact of consumer demand for cutting-edge display technology on the gases market "Currently about 20% of smartphones – the ones with lower resolution displays – use a-Si display process. Higher resolution devices and new effects such as curved displays require higher performance transistors and improvements in electron mobility. This can be achieved by switching from amorphous silicon (a-Si) transistors to low temperature polysilicon (LTPS) or metal oxide (MO), also known as transparent amorphous oxide semiconductor (TAOS). LTPS is used in about 44% of high-end LCD smart- phone displays as it has the highest performance. Due to its higher costs and scalability limitations, LTPS is less suited for large screen displays. Small displays with very high pixel resolution are produced with LTPS. High-definition large displays can be made using MO. Metal oxide semiconductors can remain in an active state longer than traditional LCD and can cut power consumption by up to 90%, which is a huge benefit." via Solid State Technology

Huge 8K panels shipping from China this year "The new screens are rocking Advanced Super Dimension Shift (ADSDS) panel technology, which sounds like some serious quantum physics kinda extra-dimensional voodoo, but is actually another liquid crystal tech allowing the wee molecules to be rotated in a more efficient way. The advantages of this technology is it's capable of dealing with incredibly high resolutions (lucky as we're talking about 7680x4320 here…) with low levels of power consumption. Another bonus of ADSDS - and why it's part of these big screens - is that it has a seriously wide viewing angle of 178º. OLED on the other hand is still sat at a slightly more limited 160º viewing angle." via TechRadar

Laser-projected mouse melds trackpad, touchscreen "ODiN is the world's first laser projection mouse, claims its creator, Taiwanese company Serafim Technologies. The device was shown off on Monday, a day before the Computex trade show in Taipei. Users who buy the product will receive a small projector that can sit on top of a table, and connects to a PC via its USB port. It works by displaying a virtual trackpad on a hard surface like a table. For users, this means they'll essentially see a small box, made out of red light, with the right and left click buttons projected at the top of the trackpad. To read the gestures, the projector has built-in sensors that can track a user's finger movements over the trackpad. The company created the product as a way to meld mouse and touchscreen functions, said Serafim's CEO GZ Chen." via Computerworld

Austrian Company Invents a Touch Screen for the Visually Impaired "Here's the gist of it: the tablet is just like an e-reader but instead of a traditional LCD display, it has one that's made out of a smart liquid that forms bubbles on the surface. When the software recognizes text from either a USB drive or webpage, it converts them into Braille letters. "We call the materials 'tixels' from 'tactile pixels' because we do not use any mechanical elements to trigger the dots," Kristina Tsvetanova, Blitab's founder, says. (Video)" via Fast Company

Everything you can do with the Force Touch Display on Apple Watch "Force Touch adds a new dimension to the watch’s user interface, a necessary one given the device’s small screen. The Retina display’s electrodes can sense when you’re tapping the screen to select an option and when you’re forcefully pressing down to bring up a secondary menu. Apple calls Force Touch the “most significant new sensing capability since Multi-Touch,” the touchscreen tech that transformed the way we interact with phones (and everything else). Apple Watch and the trackpads on the new 12-inch MacBook and revamped 13-inch Retina MacBook Pro have the new Force Touch gesture baked in, and Apple is reportedly planning to add it to the next generation of iPhones." via Macworld

Google's new finger control technology is straight out of a science fiction movie "Google showcased an early prototype of the Soli technology on stage with impressive results. Google showed how precise, fine motor skills, such as pinching the thumb and index finger, or rubbing them together at different speeds, could be used to control all sorts of things without actually touching them. In one demo, the founder of Google's Project Soli, Ivan Poupyrev, kicked a virtual soccer ball by flicking at the screen. In another, he changed the hours on a clock by turning an imaginary dial with his fingers, and then changed the minutes by raising his hands further away from the screen and doing it again." via Business Insider

Most Colorful Color Display Yet Eliminates Need For Backlight "The new display is the latest version of Mirasol, an established commercial product from Qualcomm. Instead of emitting their own light, the Mirasol displays basically use a sophisticated mirror to selectively reflect light from the environment. Researchers report in a paper published in the journal Optica that they have solved many of the biggest problems that the technology has encountered so far, decreasing the display's power demands and making it easy on the eyes in bright environments. "No more squinting at a hard-to-read display outdoors where we spend much of our time," lead author John Hong, a researcher with Qualcomm MEMS Technologies Inc., said in a statement. "We ultimately hope to create a paper-like viewing experience, which is probably the best display experience that one can expect, with only the light behind you shining on the page."" via Tech Times

Nanostructure design enables pixels to produce two different colors "The main challenge to overcome was the mixing of colors between polarizations, a phenomenon known as cross-talk. Goh and Yang trialed two aluminum nanostructures as pixel arrays: ellipses and two squares separated by a very small space (known as coupled nanosquare dimers). Each pixel arrangement had its own pros and cons. While the ellipses offered a broader color range and were easier to pattern than the nanosquare dimers, they also exhibited a slightly higher cross-talk. In contrast, the coupled nanosquare dimers had a lower cross-talk but suffered from a very narrow color range. Because of their lower cross-talk, the coupled nanosquare dimers were deemed better candidates for encoding two overlaid images on the same area that could be viewed by using different incident polarizations." via Phys.org

The Days of Squinting at Laptops in the Sun Are Almost Over "It’s a relatively new phenomenon. Back in the day—before 2006, according to this fine historical document—laptops had those squishy LCD screens that would leave psychedelic trails when you’d run your finger over them. Beyond that trippy side effect, the screens had one big benefit: Matte that were seemingly resistant to glare. Those days are gone. Pick up any laptop and odds are it’s got a glossy screen. Apple dropped the matte screen option from the MacBook Pro in 2013, and people were none too pleased. But according to Dr. Raymond Soneira, founder and president of display-testing and -calibration company DisplayMate Technologies, matte screens have their own problems." via Wired

Fiber-like light-emitting diodes for wearable displays "Professor Kyung-Cheol Choi and his research team from the School of Electrical Engineering at KAIST have developed fiber-like light-emitting diodes (LEDs), which can be applied in wearable displays. The research findings were published online in the July 14th issue of Advanced Electronic Materials. Traditional wearable displays were manufactured on a hard substrate, which was later attached to the surface of clothes. This technique had limited applications for wearable displays because they were inflexible and ignored the characteristics of fabric. To solve this problem, the research team discarded the notion of creating light-emitting diode displays on a plane. Instead, they focused on fibers, a component of fabrics, and developed a fiber-like LED that shared the characteristics of both fabrics and displays." via Printed Electronics World

Forever 21's 'Thread Screen' displays Instagram pics using fabric "Most companies seek out the latest displays for high-tech billboards, but Forever 21 has decided to take a different route for this particular Instagram project. For the past year-and-a-half, the folks at connected hardware maker Breakfast New York have been building a "Thread Screen" for the company. It's called that, because well, it's literally a screen made of 6,400 mechanical spools of multicolored threaded fabric. Those spools have five-and-a-half feet of fabric each, divided into 36 colors that transition every inch-and-a-half. They move like a conveyor belt, stopping at the right hue based on what picture they're displaying -- an infrared even scans the finished product to make sure each spool is displaying the correct color." via Engadget

What did you think about today's news? Leave a comment here and share your thoughts.

Article originally appeared on Display Alliance (http://www.displayalliance.com/).
See website for complete article licensing information.