Display Technology News Roundup 12.23.2013
Sunday, December 22, 2013
Display Alliance in Automotive, Avionics, Capacitive touch, Digital signage, E Ink, Japan, LCD, LED, News Roundup, OLED, Quantum dots, Sharp, Touchscreen

Image via Atmel

How Did Touchscreens Get Invented? "Oddly enough, the underlying technology for touchscreens wasn’t even thought up until the 1940s. Sadly, this concept was then left... well, untouched... until 1965, when one E.A. Johnson of the United Kingdom had another stab at it. Johnson came up with a finger-driven touchscreen that historians generally agree was the very first finger-driven touchscreen. ...To outline the jumps and bumps in the touchscreen’s history, Atmel has developed the following infographic (link), which -- in addition to noting some of the more historic milestones -- also includes some of the weirder tidbits of trivia and nuggets of knowledge." via EE Times

Quantum dot technology progresses, ships in LED-backlit LCD TVs "3M, for example, is now using QDs [Quantum Dots] supplied by Nanosys, Inc. to offer a quantum-dot enhancement film (QDEF) a thin, optically-clear sheet with red and green dots that replaces the existing diffuser film in the reflective cavity of an LCD backlight. This packaging, explains 3M marketing development manager Art Lathrop, "not only simplifies integration and protects the dots against flux but boosts efficiency by recycling light emitted in the wrong direction."" via LEDs Magazine

Meet 'Willi', An LCD-Covered Bus "The concept (video) designed by Tad Orlowiski is supposed to make use of transparent LCD screens, which would allow the display of images while simultaneously not interfering with the passengers views. This sounds pretty damn sci-fi, but apparently transparent LCD is a real, expensive technology." via Digital Trends

How Did 3M Create A Display With A Clear View from Any Angle "Multilayer Optical Film is made with such precision that it is viewable from a variety of angles without loss in resolution or clarity. This precision also contributes to its optical efficiency, which reduces power usage. It has become very important for the success of smartphones, says Ouderkirk, because it is one of the key pieces of technology whose primary role is augmented by a secondary function, which is to reduce battery pore consumption. Without it, most smartphones would have much higher battery consumption. But designing this new film was not easy, and required a major advance in the physical understanding of nanoscale materials’ optical behavior. Polymers were already used in high-performance reflectors, fabricated using a physical vapor deposition process that placed thin layers of organic materials. But such films were entirely unsuitable for interference optics." via R&D Mag

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

How Much Does Sharp's New LED Device Expand LCD Color Gamut Without Lowering Brightness? "Sharp combined a blue LED chip with red and green phosphors made using totally new materials and realized the 90% color gamut on NTSC (CIE1931) standards and a high brightness. With the 0.4mm-thick model for small- and middle-size LCD panels, it is possible to ensure a screen brightness that is only 3% lower than the screen brightness of the LCD panel using yellow phosphors, the company said. And the wider color gamut enables to display video that looks stereoscopic." via Tech-On

How do carbon nanotube-doped liquid crystals result in faster LCDs? "Liquid crystals (LCs) exhibit a phase of matter that has properties between those of a conventional liquid and those of a solid crystal. This means that LCs can flow like a liquid, and at the same time the anisotropic LC-molecules maintain a long range crystalline order. Their unique combinations of liquid and solid-like properties allow liquid crystals to be used pervasively in the electro-optical display technology – known as liquid crystal display (LCD). In new work, researchers have observed that a dilute suspension of a small amount of multi-walled carbon nanotubes (MWCNTs) in a nematic LC (in the nematic LC phase the molecules are oriented in parallel but not arranged in well-defined planes) results in a significantly faster nematic switching effect on application of an electric field." via Nanowerk

How Korean LCD Industry Will Be Impacted By Core Technology for Digital Exposure Equipment "A Korean research team consisting of members from both industry and academia have successfully developed key elements of 8th generation digital exposure equipment, or lithographic devices for flat panel displays, which can be used in manufacturing not only LCD but organic light-emitting diode (OLED) screens. Exposure equipment for flat panel displays was the only device that was not localized among the five key devices to produce displays, which forced local manufacturers to rely solely on imports from other countries such as Japan. As this development will open doors for the local production of exposure equipment, it is expected to bring about an economic ripple effect of over 1 trillion won ($US950 million), including import replacements worth 600 billion won (US$570 million), or 20 to 30 billion won per unit." via BusinessKorea

LCD Jargon: What Are Flat Panel Displays And How Do They Work? "Electro Luminescence (EL) is a device (or display) that utilises a material that generates fluorescence (self-luminous) when a voltage is applied. It has features such as high contrast, wide viewing angles, rapid response, low power consumption, etc. Those who don’t contain carbon molecules are called inorganic EL, and those who do are called organic EL." via Av Max

How To Recycle LCD Displays: UK Company Gets Approval "Electrical Waste Recycling Group Ltd has achieved full UK approval from the Environment Agency to be the world’s first recycling plant to mechanically process LCD Flat Panel Displays (flat screen televisions and monitors). These displays contain mercury and become hazardous waste when they enter the waste stream. Flat panel display recycling, when carried out manually, takes 15 minutes per display, however, the new process operates at a rate of one every six seconds making it faster and safer than any other process in the world. The UK sees one million used flat panel displays entering the recycling market per month." via Recycling Portal

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Why E Ink Devices Will Be Getting Lighter: New Display Technology "Fina is a glass based TFT technology that uses a very thin glass substrate to deliver products that are much lighter and thinner than what is possible with standard LCD displays. Fina displays weigh less than 50% of the weight of an equivalent glass based TFT and are less than 50% of the thickness as well. This is particularly important for mobile products requiring larger display areas. A 13.3" Fina display module, installed in the PocketBook CAD Reader, weighs approximately 60 grams." via E Ink

What Is Digital Signage Going To Look Like In 2014? "Video walls can even compete with very large single digital screens. There are still 150-inch plasma displays and LCDs now approaching 100 inches. As awesome as big displays are in their own right, they are limited with respect to their resolutions. With video walls, installers can utilize very high resolutions on each screen — reaching almost 6K by 5K. That's a higher resolution than one can achieve on a single screen. Video walls lend themselves to creativity and diversity, and that's why they will be more experiential in 2014." via Digital Signage Today

Why The Nexus 5 Display Is Synaptics' Calling Card to the Mobile Industry "The ClearPad 3350 technology used in the Nexus 5 features Synaptics' patent-pending In-Cell technology. This new technology allows touchscreen functionality to be present inside of the LCD display, which negates the need for an additional layer of sensors. The benefit is that it allows the mobile device to be thinner, lighter, and more responsive." via Daily Finance

Japan Display to acquire Taiwan LCM maker and establish new subsidiary in China "Japan Display (JDI) has decided to make Star World Technology Corporation (STC), a Taiwa-based manufacturer of LCD modules (LCMs), into a subsidiary of Taiwan Display (TDI), JDI's wholly owned subsidiary, by acquiring approximately 80% of STC's outstanding common shares through TDI. ...The principal objective of TDI is to expand business in the market for small and medium-sized displays, its main business domain, particularly in the China market, which is growing rapidly." via DigiTimes

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

Are Car Touchscreens Losing Their Appeal? "Jack Nerad, Executive Editorial Director at Kelly Brook Blue, commented to USA Today that it is better to stick to what consumers know best, saying that Ford’s decision to get rid of buttons entirely “may have been a bit overkill”. Consumer Reports has furthermore labelled the interface “distracting”, the fundamental design as “flawed” and the flush, touch-sensitive buttons as “maddeningly fussy and…hard to distinguish.” Frost & Sullivan has taken a more diplomatic line, stating that “OEMs are finding it hard to balance out an offering which provides the latest and greatest features but also assures safety… clearly proving that full touch experience is not yet automotive ready.”" via Automotive World

Boston College Study: How Touchscreen Technology Impacts Shopping Choices ""The Carroll School researchers had separate groups of people surf online for a sweater and a city walking-tour service using a touchscreen, touchpad, and normal computer mouse in one study, and sweatshirts and tents on iPads and laptops in a second study. After choosing a product, participants were asked how much money it would take for them to sell their product if someone else wanted to buy it. Those using the touchscreen wanted almost 50 percent more money for their chosen product than those using the mouse or touchpad laptop. Explaining the reason for such elevated perceptions of ownership, Brasel says, “This is the first evidence that we know of exploring this endowment effect via touchscreen interface. When we reach out to grab a product in the real world, we’ll hold the product in one hand and touch the product with the other hand. So the act of doing that on a tablet mimics our real-world experience much better than when we’re operating a mouse that in turn moves a pointer that is on some unconnected screen we’re not even holding."" via The Boston College Chronicle

How a robot is testing whether humans will find a new touchscreen responsive. "It’s a far cry from the menial work that Oculus’s robot arm was designed for: moving silicon wafers around in a chip fab. But it’s not just a party trick. Intel built Oculus to try to empirically test the responsiveness and “feel” of a touch screen to determine if humans will like it. Oculus does that by analyzing how objects on a device’s screen respond to its touch. It “watches” the devices that it holds via a Hollywood production camera made by Red that captures video at 300 frames per second in higher than HD resolution. Software uses the footage to measure how a device reacts to Oculus—for example, how quickly and accurately the line in a drawing program follows the robot’s finger, how an onscreen keyboard responds to typing, or how well the screen scrolls and bounces when Oculus navigates a long list." via MIT Technology Review

Aviation Displays: Honeywell Touchscreen Research Guides FAA Regulation ""We have a heavy focus on human factors, including the appropriate intended function and functional allocation for touch technology on the flight deck," said Merdich. "Our research, has shown that there are key attributes — technology, location, button size, spacing, menu navigation, etc. — to the implementation of touch that are instrumental toward insuring a satisfying user experience with touch in this unique environment." Focusing on human factors should help to relieve fears expressed by operators and pilots in reaction to previous reports on touchscreen technology regarding inadvertent touchscreen swipes. To address inadvertent touchscreen interactions, Honeywell's researchers and engineers are evaluating the usability of differing touch technologies, such as digital resistive technology, which requires more pressure to change the function of the interface than would a typical swipe on a touchscreen smartphone or tablet." via Aviation Display

How To Reduce electrical noise in projected capacitive touch panel designs "The most common culprit is, of course, the TFT. It’s directly behind the PCAP touch panel and is radiating straight into it. A TFT contains a variety of digital signals which may have frequency components in the hundreds of kilohertz, which is the exact frequency range that can cause problems for a PCAP. The backlight is typically the worst offender on the TFT. When choosing a TFT for a PCAP based project, try to avoid TFTs with CCFL backlights. The inverter used to drive a CCFL is very noisy and may cause localized (i.e. the noise is present directly above the location of the inverter) noise issues on the PCAP. An LED backlight is generally the best option when available." via EDN

What did you think about today's news? Leave a comment here and share your thoughts.

Article originally appeared on Display Alliance (http://www.displayalliance.com/).
See website for complete article licensing information.