FREE

Subscribe to the display technology news roundups. You can also post your own content in the open section.

Twitter
146-inch 3D 3D Micro LED 3D Printing 4K 4K2K 8K ACEP Aledia Amazon AMOLED AMS767KC04-1 Anti-reflective Apple Apple Watch AR ASSA ABLOY Entrance Systems Astra Glass AU Optronics AUO Australia Automotive Automotive Displays Avionic Avionics Avnet Axus Backlight Belkin Blue phase LCD Blue TADF Blue Wave Semiconductor Blue Wave Semiconductors BOE burn-in Buyer Capacitive touch CCFL CCPD CES CES 2019 CGS children China China Star China US Trade War Circular LCD Clothing OLED CMI COF Color Filters Corning Coronavirus COVID-19 CPT CRT CSOT Curved Curved OLED CYNORA D33 Da Qing Dark Mode Digital signage Display Display Week 2019 Dual Panel LCD Dynamic Range E Ink EE Ink Eink Electrofluidic imaging Electronics Electrowetting End-of-life EOL notice ePaper E-paper Factory Fingerprint Fingerprint sensor Fish Scales Flexable FlexEnable Flexible Flexible display Flexible LCD Flexible OLED Flexible Perovskite Flexi-LCD FlexPai Force Touch Foxconn Foxconn Technology Group Fujitsu Galaxy S10 Gesture recognition Global Lighting Technologies Glossy displays Goodix Google Glass Gorilla Glass Graphene graphene-based OFET HannStar haptic Haptography HD Head-mounted display Heads up display High End Panels Hisense HKC Holograph Hot Offer Huawei Human Machine Interface Hybrid IGZO In-cell touch India In-Display Fingerprint Industrial display InFocus Infrared Innolux Interactive Interactive surfaces iPad iPhone iPhone SE iPhone X IPS ITO ITRI I-Zone Japan Japan Display Jasper Display JBD JDI JOLED Kindle Korea large-size LCD LCD LCD iPhone LCD Prices LED LG LG Display LTPS Market Mate 20 Mattrix Technologies Medical Medical Display Merck Meural Micro LED Microdisplay MicroLED Micro-LED Micro-LED TV microsoft Military Military displays Mini LED Mitsubishi Mojo Vision Monochromatic Multitouch Nano Cell Technology Nanoco nanoplatelets Nanowire Netgear News Roundup NHK Nubia OFET OLCD OLED OLED TV OLET Organic Semiconductors Osaka University Osram Panasonic Paperwhite Patents PCAP Philips PHOLED Phone Photocentric Pixels Planar Plasma Plastic Logic PlayNitride Plessey Polarizer POLED POS Screen Price Projected capacitive Projector QD QD-LED QLED Quantum Dot Quantum dots Quantum Materials Corp Radiant Radiant Opto-Electronics Recycling Red Phosphor RIKEN Rohinni ROHM rollable Rollable TV Rugged display Russian Samsung Sanan Sanan Optoelectronics Sapphire Seeya Seren Sharp SID SmartKen smartphones Smartwatch Solar Solar-Tectic Sony Soul Semiconductor Sound on Display South Korea Stereoscopy Stocks Substrate Sunlight readable Tactile Taiwan Tappy Tariff tariffs TCL TCL CSOT Technology TFT The Wall Tianma TN Total Reclaim touch Touchscreen Trade War Transparent Transparent OLED Trump TSMC TV Ulsan National Institute of Science and Technology ultra-fine pitch Ultra-High Resolution Ultrastable Films unbreakable undefined Universal Display University of California San Diego US USA Veeco Video wall Virtual Reality Visionox Vizio VR Vuzix Wah Hong Wearable Winstar Wisconsin XTPL
Saturday
Jul262014

Display Technology News Roundup 7.26.2014

Image via LG Display

Could New Vision-Correcting Display Free Users From Their Glasses? "The technology uses algorithms to alter an image based on a person’s glasses prescription together with a light filter set in front of the display. The algorithm alters the light from each individual pixel so that, when fed through a tiny hole in the plastic filter, rays of light reach the retina in a way that re-creates a sharp image. Researchers say the idea is to anticipate how your eyes will naturally distort whatever’s onscreen — something glasses or contacts typically correct — and adjust it beforehand so that what you see appears clear. Brian A. Barsky, a University of California, Berkeley, computer science professor and affiliate professor of optometry and vision science who coauthored the paper, says it’s like undoing what the optics in your eyes are about to do. The technology is being developed in collaboration with researchers at MIT and Microsoft." via Mashable

Will AMOLED display panels be cheaper than LCD within 2 years? "According to the NPD DisplaySearch OLED Technology Report, manufacturing costs for AMOLED panels are currently 10 to 20 percent higher than for TFT-LCD displays; however, considering the rapid improvement in AMOLED panel production yields, the manufacturing costs for AMOLED mobile phone panels are expected fall below costs for LCD mobile phone panels within the next two years. ...Early on, AMOLED panels were expected to cost less than LCD panels, because they do not require backlighting. Instead, production challenges kept AMOLED yields low, and thus costs remained higher than for equivalent LCDs. AMOLED became a high-end product, due to its high color gamut, good contrast, and slimness. Recent production yield improvements are expected to help AMOLED penetrate more broadly into smartphone panels." via LEDs Magazine

How Strong Is Your Industrial LCD/LED User-Interface IQ? "Both LEDs and LCDs provide significant benefits to industrial control applications. In addition to well-documented benefits – such as a 70 to 80 percent reduction in energy requirements, enhanced durability/shock/vibration resistance and extended lifetime – recent technological advances have generated additional, particularly beneficial features. New extended temperature ranges for both LCD and LED displays, nonbulky heaters and cost-effective custom solutions have revolutionized user-interface displays for industrial control applications. Identifying a supplier with expertise in both LED and LCD technologies, as well as in integrated solutions, is key. Combining this with value-added services allows design engineers to develop user interfaces that provide cost savings, reliability and enhanced visual performance in even the most challenging of industrial environments." via Industrial Photonics

Watch LG’s large bendable and transparent displays in action "The video above shows LG Display’s 18-inch polyamide-based rollable display with a curvature radius of 30R. In practice, that means you can bend the panel back and forth without damaging it, but we’re still a few years away from panels you can roll up like a sheet of paper and carry in a tube. Also, the current model is just 1200 x 810, a resolution that is in no way suitable for commercialization. But LG Display is confident it can iron out the technical kinks and bring a 60-inch panel of 4K resolution that can be rolled up in a 3 centimeters tube by 2017. (Video)" via Android Authority

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Japan Display Begins to Mass Produce IPS-NEO Displays "Liquid crystal panel manufacturing requires an orientation process that aligns liquid crystal molecules in a uniform direction. Generally, the rubbing method, as portrayed in the diagram below, is employed. In this process, an orientation membrane is rubbed in a fixed direction with a rubbing roller with cloth wound on it. With this method, unevenness of the circuit pattern formed on the glass substrate could impede proper orientation and the involvement of foreign particles in the rubbing process may affect the production yield. Adopting JDI’s photo alignment method, IPS-NEO is free from these issues and achieves a higher contrast, superior viewing angle characteristics and an improved production yield." via Xbit Laboratories

MediaTek Unveils First Mobile 120Hz Display Technology "Key to this breakthrough is MediaTek's Response Time Enhancement Technology, which significantly decreases the display's response time and reduces motion blur experienced on 60Hz display by up to 50%, bringing everything on the screen to life with crisp and smooth motion. In addition to the Response Time Enhancement Technology, MediaTek ClearMotion(TM) featured in the SoCs ensures full utilization of the 120Hz display with automatic frame rate conversion for content that is standard 24fps and 30fps videos and displays them in 120fps, putting the best and smoothest viewing experience in the hands of consumers around the world. These advancements are a demonstration of MediaTek's commitment to developing high-quality solutions that foster limitless creativity and innovation." via IndiaTimes

What kind of display does wearable tech need? "There are also challenges with smartwatch displays. "On one hand you have Pebble. On the other side you have awesome looking high-resolution color displays that are completely not readable in daylight and that use more power. This is your choice today. There is no magic pill. You have to pick one. For the next two years, wearables will suffer from this problem," Joire said. Joire said Pebble chose a monochrome E-paper screen so that it would be visible in daylight and preserve battery life. "Most of the time for a smartwatch at least, you're not using it when you're indoors because you have your phone. You generally use it when you're walking somewhere outdoors. So we picked that side of the fence. But nothing stops us from making two watches," Joire said." via TechRepublic

InkCase Plus Adds A Second, Standalone E-ink Screen To Your Android Phone "Meet InkCase Plus: a second companion screen for your Android smartphone that’s designed to slot into a case so you can stack one pane atop the other, sandwich style. Currently it’s just a Kickstarter prototype, with its makers looking for $100,000 in crowdfunding to get the device to market. ...Now it’s worth saying we’ve seen this idea before. In fact Russian startup YotaPhone makes a dual-screen smartphone that incorporates an e-ink screen onto the rear of the phone — which is especially neat (not least because it’s not so chunky). However G-Jay Yong, CEO of Oaxis, the company behind the InkCase Plus, reckons the standalone Yota-concept-clone has advantages over a single combined device — since you can view your two mobile screens side by side if you like. In other words, it doesn’t have to be one or the other." via TechCrunch

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Are flexible organic TFTs closer with new breakthrough? "In Japan, the International Center for Materials Nanoarchitectonics (or MANA for short) has announced another step forward for display technology, in the form on a new Nano Ink that can be used in the printing of flexible organic thin film transistors (OTFT) at room temperature. TFTs are an essential technology used in display backplanes, and are responsible for controlling the light parts, be that LCD or OLED, of the visible display. Although printed circuitry has been in development in various forms for a little while, MANA claims to have developed a new technique which overcomes the high temperature annealing processes typically associated with printed electronics. This means that its technique can be used to print more complex components onto plastic substrates, which is perfect for flexible electronics and display products." via Android Authority

Does Google Glass have potential as a medical display? "Karandeep Singh believes Glass can successfully improve clinical efficiency and physician-patient interaction if introduced in the right way. “In a medical setting, it will be perceived differently than in a public setting,” he said. “When you’re with a patient, that’s a different social contract. And if you’re viewing private patient information, what better way to display it to you than in a way that only you can see it?” One of the functionalities Singh has engineered is for Glass to connect to patients’ electronic health records. Though designed to improve efficiency, clicking and scrolling on a computer leads a physician to spend a significant amount of time turned away from a patient. And some physicians find it hard to synthesize disparate pieces of data as they click through. “The big mistake many people make is that they assume that the Glass is replacing static desktop displays,” said Paul Lukowicz, a professor in computer science at the Technical University of Kaiserslautern in Germany who consults for the companyWearable Technologies. He sees great value in “precise cross referencing” that goes beyond the normal desktop interface." via Nextgov

Samsung’s Head-Up display Will Switch Between Virtual And Real Reality "Samsung‘s VR efforts are one leaky ship lately, with a report today echoing earlier rumors that the company would be partnering with Oculus VR for its own headset. Now, a leaked pre-release version of the Samsung VR software has made its way into the hands of SamMobile, apparently revealing some of the early functionality the head-mounted display will have, and detailing some of its workings. Based on the leaked app screens, the Samsung Gear VR device will indeed mount a Galaxy smartphone in front of your face, likely similar to the way that Google Cardboard works with Android devices. But Samsung’s device will predictably be limited to its own smartphones, at lest according to rumors. It’ll also plug into VR via USB 3.0, which is only supported on current Galaxy devices including the S5 and Note 3, likely because of the increased bandwidth for data made available through use of that connector." via TechCrunch

Advances in capacitive touch and passive capacitive pens "Whatever the technical issues may be, we've now reached a point where customers pretty much expect capacitive multi-touch even for industrial and vertical market tablets. The tap / pan / pinch / zoom functionality of consumer tablets has just become too pervasive to ignore. So we've been seeing more and more rugged and semi-rugged tablets (as well as handhelds) using capacitive touch. That's no problem with Android-based tablets since Android was designed for capacitive touch but, unlike in the consumer market where iOS and Android dominate, but enterprise customers continue to demand Windows on their tablets. Which means a precise pen or stylus is pretty much mandatory. Now what about capacitive pens? They have been around since the early days of the iPad, using a broad rubber tip on a stylus to provide operation a bit more precise than is possible with a finger. How much more precise? That depends. Even slender index finger tips measure more than 10 mm whereas those capacitive styli have tips in the 7-8 mm range. That seems improvement enough for several manufacturers of rugged tablets to include capacitive styli with their products. The tips of those styli are narrower than those of earlier versions, but still in the 5 mm range, and they still have soft, yielding tips. They work a bit better than older ones, but in no way as well as a mouse or an active pen. Not much that can be done, or can it?" via RuggedPCReview

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

What Advantage Do Curved LCD TVs Have? "One of the main weaknesses of many LED-lit LCD TVs is a relatively limited optimal viewing angle, as compared to plasma and OLED. TVs that use VA (vertically aligned) LCD panels often have deep blacks when viewed head-on, but they quickly lose contrast when viewed from an angle. Even when you sit centered facing a flat screen, you view the edges of that screen at an angle. Depending on how close you sit, that can lead to a loss of picture quality toward the edges of the screen. Now, consider UHD/4K resolution: It requires the viewer to get close to the screen to see all the detail. When viewing a curved screen close up and centered, the viewing angle at a screen's edges stays closer to perpendicular than it does with a flat screen. For one solitary viewer who sits in the right position, a curved LCD screen provides the very tangible benefit of keeping the entire panel aimed at the viewer, which can result in higher contrast and greater uniformity across the entire screen." via AVS Forum

What are Touchscreens of the Future? "Carnegie Mellon's Chris Harrison demonstrates TouchTools and TapSense, tablet apps he built to explore new ways of that people might interact with screens in the future. (Video)" via IEEE Spectrum

How does a transparent display reimagine the ruler? "Glassified is a modified ruler with a transparent display to supplement physical strokes made on paper with virtual graphics. Because the display is transparent, both the physical strokes and the virtual graphics are visible in the same plane. A digitizer captures the pen strokes in order to update the graphical overlay, fusing the traditional function of a ruler with the added advantages of a digital, display-based system. We describe use-cases of Glassified in the areas of math and physics and discuss its advantages over traditional systems. (Video)" via Vimeo

Why are OLED TVs being shunned by the world, but LG is embracing them? "Currently, Samsung and LG use different approaches to OLED panel engineering. As Soneira explains, "Samsung uses an expensive Low Temperature Poly Silicon LTPS backplane for their R,G,B OLED TVs, while LG uses an IGZO backplane with all white OLEDs with R,G,B,W color filters, so their costs are lower." All that tech-speak means is that there is more than one way to skin an OLED cat, and Samsung’s is more involved and costly. Having spoken to Samsung extensively about its OLED methods, we know that the company very much prefers its approach, and is not willing to sacrifice what it feels is superior quality for the sake of cranking out a product that not a lot of people are in a position to purchase anyway." via Digital Trends

What did you think about today's news? Leave a comment here and share your thoughts.

PrintView Printer Friendly Version

EmailEmail Article to Friend

Reader Comments

There are no comments for this journal entry. To create a new comment, use the form below.
Editor Permission Required
You must have editing permission for this entry in order to post comments.