SmarterGlass

state-of-the-art display solutions

www.smarterglass.com 978 997 4104 sales@smarterglass.com

Version	0.4			
Total pages	22			
Date	2007.03.16			

Product Specification

7" color TFT-LCD module

MODEL NAME: A070FW03 V7

(◆) Preliminary Specification(.....) Final Specification

Note: The content of this specification is subject to change.

© 2006 AU Optronics All Rights Reserved, Do Not Copy.

Record of Revision

			Treating of treatments
Version	Revise Date	Page	Content
0.0	30/Nov/2006		First draft.
0.1	2/Jan/2007	10	Revise brightness to 280nits(typ.)
		14,15	Update outline drawing - Update LED cable length to 130mm - Change LED connector to MOLEX- 51021-0200
0.2	8/Jan/2007	10	Modify min. and max. value of White chromaticity
			Add uniformity data
0.3	25/Jan/2007	7	Modify LED lifetime to 20,000 hours
0.4	16/Mar/2007	7	Add max. and min. LED lightbar voltage

Version : 0.4 Page : 1/22

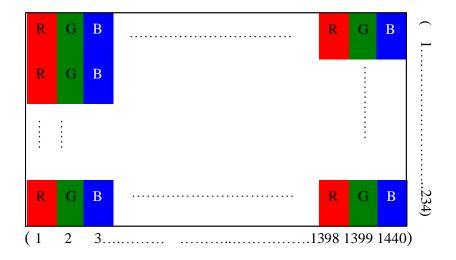
Contents:

۹.	Physical specification	P3
В.	Electrical specifications	P4
	1. Pin assignment	P4
	a. TFT-LCD panel driving section	P4
	b. Backlight driving section	P5
	2. Absolute maximum ratings	P6
	3. Electrical characteristics	P7
	a. Typical operating conditions	Р7
	b. Current consumption	Р7
	c. Backlight driving conditions	P7
	4. AC Timing	P8
	a. Timing conditions	P8
	b. Timing diagram	P8
	5. Power Sequence	P9
C.	Optical specifications	P10
D.	Reliability test items	P12
Ε.	Packing form	P13

Version : 0.4 Page : 2/22

Appendix:

Fig.1-(a) Outline dimension of TFT-LCD module	P14
Fig.1-(b) Outline dimension of TFT-LCD module	P15
Fig.2 Sampling clock timing	P16
Fig.3 Horizontal display timing range	P17
Fig.4-(a) Horizontal timing	P18
Fig.4-(b) Detail horizontal timing	P19
Fig.5 Vertical shift clock timing	P20
Fig.6-(a) Vertical timing (From up to down)	P21
Fig.6-(b) Vertical timing (From down to up)	P22



Version : 0.4 Page : 3 /22

A. Physical specifications

NO.	Item	Specification	Remark
1	Display resolution (dot)	1440(W)×234(H)	
2	Active area (mm)	154.08(W)×86.58(H)	
3	Screen size (inch)	7.0(Diagonal)	
4	Dot pitch (mm)	0.107(W)×0.370(H)	
5	Color configuration	R. G. B. stripe	Note 1
6	Overall dimension (mm)	164.9 (W)×100(H)×5.7(D)	Note 2
7	Weight (g)	153.5	
8	Surface treatment	AG (25%)	
9	Backlight unit	LED	

Note 1: Below figure shows the dot stripe arrangement.

Note 2: Refer to Fig. 1

Version : 0.4 Page : 4/22

B. Electrical specifications

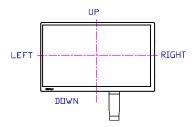
1.Pin assignment

a. TFT-LCD panel driving section

	panel driv			Τ
Pin no	Symbol	1/0	Description	Remark
1	GND	-	Ground for logic circuit	
2	V _{CC}	I	Supply voltage of logic control circuit for scan driver	
3	V_{GL}	I	Negative power for scan driver	
4	V_{GH}	I	Positive power for scan driver	
5	STVR	I/O	Vertical start pulse	Note 1
6	STVL	I/O	Vertical start pulse	Note 1
7	CKV	I	Shift clock input for scan driver	
8	U/D	I	UP/DOWN scan control input	Note 1,2
9	OEV	I	Output enable input for scan driver	
10	VCOM	I	Common electrode driving signal	
11	VCOM	I	Common electrode driving signal	
12	L/R	I	LEFT/RIGHT scan control input	Note 1,2
13	MOD	I	Sequential sampling and simultaneous sampling setting	Note 3
14	OEH	I	Output enable input for data driver	
15	STHL	I/O	Start pulse for horizontal scan line	Note 1
16	STHR	I/O	Start pulse for horizontal scan line	Note 1
17	CPH3	I	Sampling and shifting clock pulse for data driver	
18	CPH2	I	Sampling and shifting clock pulse for data driver	
19	CPH1	I	Sampling and shifting clock pulse for data driver	
20	V _{CC}	I	Supply voltage of logic control circuit for data driver	
21	GND	-	Ground for logic circuit	
22	VR	I	Alternated video signal input(Red)	
23	VG	ı	Alternated video signal input(Green)	
24	VB	I	Alternated video signal input(Blue)	
25	AV_DD	I	Supply voltage for analog circuit	

Version : 0.4 Page : 5/22

26 AV _{SS} - Ground for analog circuit		26	AV_{SS}	ı	Ground for analog circuit	
---	--	----	-----------	---	---------------------------	--


Note 1: Selection of scanning mode (please refer to the following table)

Setting of scan control input		IN/O	UT state f	for start p	ulse	Seanning direction
U/D	L/R	STVR	STVR STVL STHR STHL		STHL	- Scanning direction
GND	V_{CC}	OUT	IN	OUT	IN	From up to down, and from left to right.
V _{cc}	GND	IN	OUT IN OUT		OUT	From down to up, and from right to left.
GND	GND	OUT	IN	IN	OUT	From up to down, and from right to left.
V _{CC} V _{CC}		IN	OUT	OUT	IN	From down to up, and from left to right.

IN: Input; OUT: Output.

Note 2: Definition of scanning direction.

Refer to figure as below:

Note 3: MOD = H: Simultaneous sampling.

MOD = L: Sequential sampling.

Please set CPH2 and CPH3 to GND when MOD = H.

b. Backlight driving section (Refer to Figure 1)

No.	Symbol	I/O	Description	Remark
1	Н	I	Power supply for backlight unit (High voltage)	
2	GND	-	Ground for backlight unit	

Version : 0.4 Page : 6/22

2. Absolute maximum ratings

Item	Symbol	Condition	Min.	Max.	Unit	Remark
	V _{CC}	GND=0	-0.3	7	V	
Power voltage	AV_DD	AV _{SS} =0	-0.3	7	V	
Ů	V_{GH}	GND=0	-0.3	18	V	
	V_{GL}	OND-0	-15	0.3	V	
	$V_{GH} - V_{GL}$		-	33	V	
Input signal voltage	Vi		-0.3	AV _{DD} +0.3	V	Note 1
input digital voltage	Vı		-0.3	V _{CC} +0.3	V	Note 2
	VCOM		-2.9	5.2	V	
Storage Temperature	Tstg		-30	+85	$^{\circ}\!\mathbb{C}$	Note 3
Operation Temperature	Тор	Surface	-20	+70	$^{\circ}\!\mathbb{C}$	Note 3,4
LED Max. Rating Current	I _{LED}			25	mA	

Note 1: VR, VG, VB.

Note 2: STHL, STHR, OEH, L/R, CPH1~CPH3, STVR, STVL, OEV, CKV, U/D.

Note 3: The temperature of panel surface must not exceed this rating

Note 4: The operating temperature assures only driving. Contrast, response time, the other display quality is judgment at 25 $^{\circ}$ C.

Version : 0.4 Page : 7/22

3. Electrical characteristics

a. Typical operating conditions (GND=AVss=0V, Note 4)

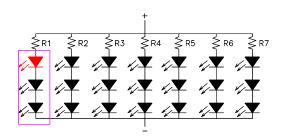
Ite	em	Symbol	Min.	Тур.	Max.	Unit	Remark
		V_{CC}	3	5	5.5	V	
		AV_DD	4.5	5	5.5	V	
Power	supply	V_{GH}	14.3	15	15.7	V	
		V_{GL}	-10.5	-10	-9.5	V	
	signal	V_{iA}	0.4	-	AV _{DD} -0.4	V	Note 1
•	litude 'G,VB)	V_{iAC}	-	3	-	V	AC component
(v i v , v	O, VD)	V_{iDC}	ı	AV _{DD} /2	-	V	DC component
		V_{CAC}	3.5	5.6	6.5	Vp-p	AC component, Note 2
VCOM		V_{CDC}	1.4	1.7	2.0	V	DC component
Input	H Level	V_{IH}	0.8 V _{CC}	-	V _{CC}	V	Note 3
signal voltage	L Level	V_{IL}	0	-	0.2 V _{CC}	V	

Note 1: Refer to Fig.4- (a).

Note 2: Adjusting the AC component of VCOM could change the brightness of LCD panel.

Note 3: STHL, STHR, OEH, L/R, CPH1~CPH3, STVR, STVL, OEV, CKV, U/D.

Note 4: Be sure to apply GND, V_{CC} and V_{GL} to the LCD first, and then apply V_{GH} .


b. Current consumption (GND=AVss=0V)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Current	I_{GH}	V _{GH} =15V	-	0.20	0.5	MΑ	
for driver	I_{GL}	V _{GL} =-10V	-	0.80	1.5	MΑ	
	I _{cc}	V _{CC} =5V	-	3.0	6.0	MΑ	
	I _{DD}	AV _{DD} =5V	-	17.0	30	MΑ	

c. Backlight driving conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED Lightbar Current	Ι _L		160		mA	
LED Lightbar Voltage	V _L	10	12	12	V	
LED Life Time	L _L	20,000			Hr	

Note 1: LED backlight is 21 pcs of LED lightbar type.

Note 2: Definition of "LED Lifetime": brightness is decreased to 50% of the initial value. LED Lifetime is restricted under normal condition, ambient temperature = 25 °C and LED voltage = 12V.

Version : 0.4 Page : 8/22

4. AC Timing

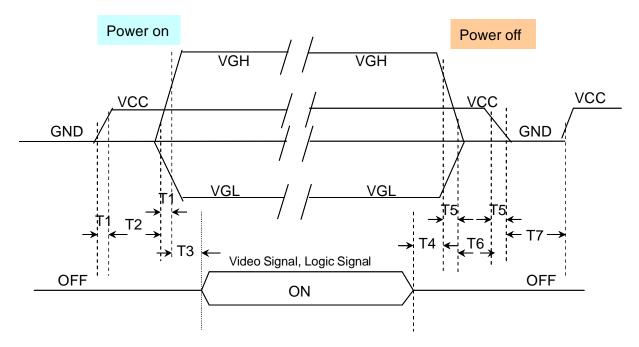
a. Timing conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit.	Remark
Rising time	t _r	-	-	10	ns	Note 1
Falling time	t _f	-	-	10	ns	Note 1
High and low level pulse width	t _{CPH}	99	103	107	ns	CPH1~CPH3
CPH pulse duty	t _{CWH}	40	50	60	%	CPH1~CPH3
CPH pulse delay	t _{C12} t _{C23} t _{C31}	30	t _{CPH} /3	t _{CPH} /2	ns	CPH1~CPH3
STH setup time	t _{SUH}	20	-	-	ns	STHR,STHL
STH hold time	t _{HDH}	20	-	-	Ns	STHR,STHL
STH pulse width	t _{STH}	-	1	-	t _{CPH}	STHR,STHL
STH period	t _H	61.5	63.5	65.5	μ s	STHR,STHL
OEH pulse width	t _{OEH}	-	1.22	-	μs	OEH
Sample and hold disable time	t _{DIS1}	-	8.28	-	μ s	
OEV pulse width	t _{OEV}	-	5.40	-	μ s	OEV
CKV pulse width	t _{CKV}	-	4.18	-	μ s	CKV
Clean enable time	t _{DIS2}	-	3.74	-	μ s	
Horizontal display start	t _{SH}	-	0	-	T _{CPH} /3	
Horizontal display timing range	t _{DH}	-	1440	-	T _{CPH} /3	
STV setup time	t _{SUV}	400	-	-	ns	STVL,STVR
STV hold time	t_{HDV}	400	-	-	ns	STVL,STVR
STV pulse width	t _{STV}	-	-	1	t _H	STVL,STVR
Horizontal lines per field	t _V	256	262	268	t _H	Note 2
Vertical display start	t _{SV}		3	-	t _H	
Vertical display timing range	t _{DV}		234	-	t _H	
VCOM rising time	t _{rCOM}		-	5	μ S	
VCOM falling time	t _{fCOM}		-	5	μ s	
VCOM delay time	t _{DCOM}		-	3	μ s	
RGB delay time	t _{DRGB}		-	1	μ S	

Note 1: The values herein are for all of the logic signals.

Note 2: Please don't use odd horizontal lines to drive LCD panel for both odd and even field simultaneously.

b. Timing diagram


Please refer to the attached drawing, from Fig.2 to Fig.6.

Version : 0.4 Page : 9/22

5. Power Sequence

Sequence for power on/off and Signal on/off

T1 \leq 15ms (From 10%*VCC to 90%*VCC , when VCC is Low to High);

T2 \leq 10ms (From 90%*VCC to 10%*VGH $\,^{,}$ when VCC is Low to High) ;

T3 \leq 10ms (From 90%*VGH to Video signal , when VGH is Low to High);

T4 \leq 10ms (From Video signal to 90%*VGH $^{\circ}$, when VGH is High to Low);

T5 \leq 20ms (From 90%*VCC to 10%*VCC , when VCC is High to Low);

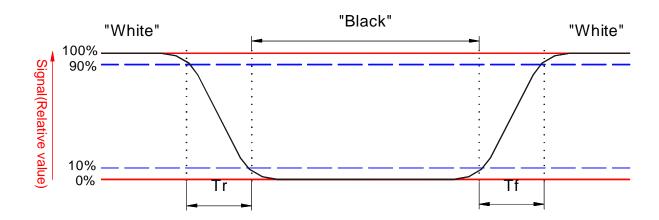
T6 \leq 10ms (From 10%*VGH to 90%*VCC $^{\circ}$, when VCC is Low to High);

T7 \geq 0.4s (From 10%*VCC is H \rightarrow L to 10%*VCC is L \rightarrow H) \circ

Version : 0.4 Page : 10 /22

C. Optical specification (Note 1, Note 2)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
I Response time	Rise	Tr	<i>θ</i> =0°	-	12	24	ms	Note 3,5
	Fall	Tf		-	18	36	ms	
Contrast ratio		CR	At optimized Viewing angle	300	400	-		Note 4, 5
Viewing angle	Тор			30	40	-		Note 5, 6
	Bottom		CR≧10	50	65	-	deg.	
	Left			50	65	-	· ·	
	Right			50	65	-		
Brightnes	S	Y _L	V _L =12V, 25°C	200	280	1	cd/m ²	Note 7
White chromaticity		Х	<i>θ</i> =0°	0.28	0.31	0.34		Note 7
		Υ	<i>θ</i> =0°	0.30	0.33	0.36		
Uniformit	y			75	80	1	%	


Note 1 : Ambient temperature =25 $^{\circ}$ C . To be measured in the dark room.

Note 2 :To be measured on the center area of panel with a viewing cone of 1 °by Topcon luminance meter BM-5, after 15 minutes operation.

Note 3. Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising time), respectively.

The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Version : 0.4 Page : 11 /22

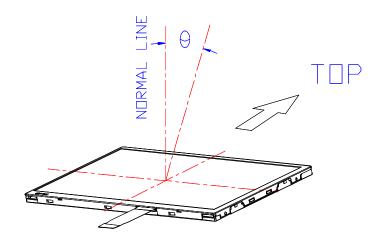
Note 4. Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Contrast ratio (CR)= Photo detector output when LCD is at "White" state
Photo detector output when LCD is at "Black" state

Note 5. White $Vi=V_{i50} + 1.5V$

Black Vi= $V_{i50} \pm 2.0V$


"±" means that the analog input signal swings in phase with V $_{\text{COM}}$ signal.

" $\overline{+}$ " means that the analog input signal swings out of phase with V $_{\text{COM}}$ signal.

 V_{i50} : The analog input voltage when transmission is 50%

The 100% transmission is defined as the transmission of LCD panel when all the input terminals of module are electrically opened.

Note 6. Definition of viewing angle, details please refer to figure as below.

Note 7. Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

Version : 0.4 Page : 12 /22

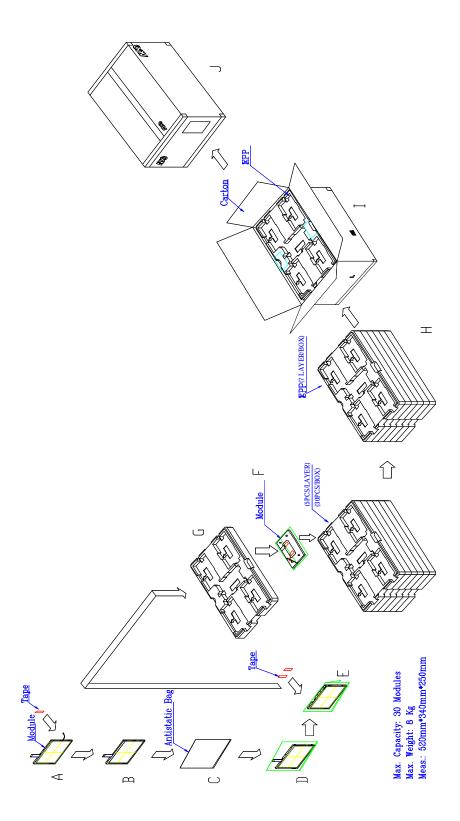
D. Reliability test items (Note 1):

Following the below condition for test criteria. Each item needs 5 piece data.

No.	Test items	Conditions		Remark
1	High temperature storage	Ta= 85°C 2	240Hrs	
2	Low temperature storage	Ta= -30°C 2	240Hrs	
3	High temperature operation	Tp= 70°C 2	240Hrs	
4	Low temperature operation	Tp= -20°C 2	240Hrs	
5	High temperature and high humidity	Tp= 40°C, 90% RH 2	240Hrs	Operation
6	Heat shock	-10°C~60°C/200 cycles 1h	Hrs/cycle	Non-operation
7	Electrostatic discharge	\pm 200V,200pF(0 Ω), once f	for each terminal	Non-operation
8	Vibration	Stoke : 1.5	~55Hz 5mm) ~ 55 ~ 10Hz of X,Y,Z	JIS C7021, A-10 Condition A
9	Mechanical shock	100G, 6ms, ±X,±Y,±Z 3 times for each direction	JIS C0041, A-7 Condition C	
10	Vibration (with carton)	Random vibration: 0.015G ² /Hz from 5~200H	IEC 68-34	
11	Drop (with carton)	Height: 60cm	JIS Z0202	

Note1: Ta: Ambient temperature.

Note2: Tp: Panel Surface Temperature


Note3: In the standard conditions, there is not display function NG issue occurred. All the cosmetic specification is judged before the reliability stress.

E. Packing form


Model: A070FW03 V7

Version : 0.4 Page : 13 /22

Version : 0.4 Page : 14/22

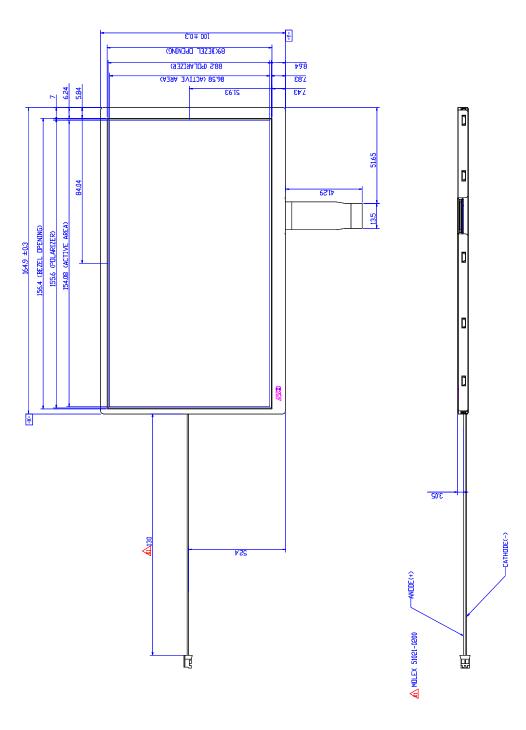


Fig.1-(a) Outline dimension of TFT-LCD module (Front)

Version : 0.4 Page : 15 /22

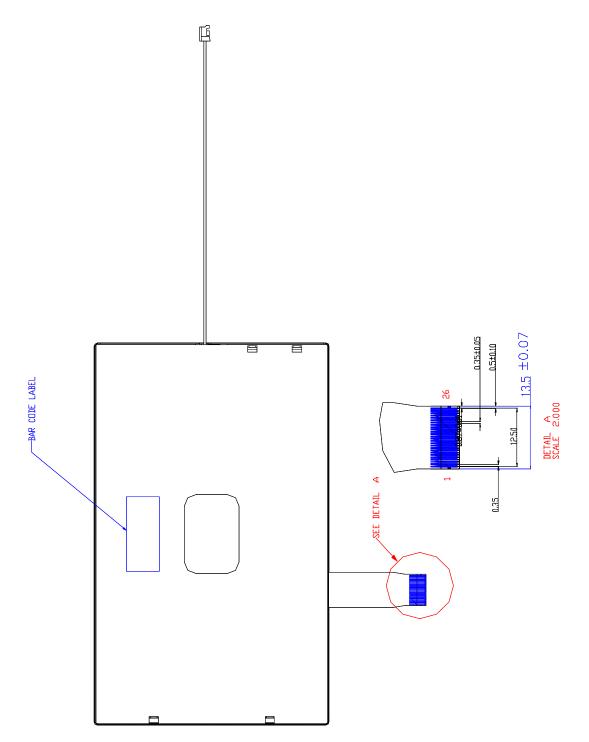


Fig.1-(b) Outline dimension of TFT-LCD module (Back)

Version : 0.4 Page : 16 /22

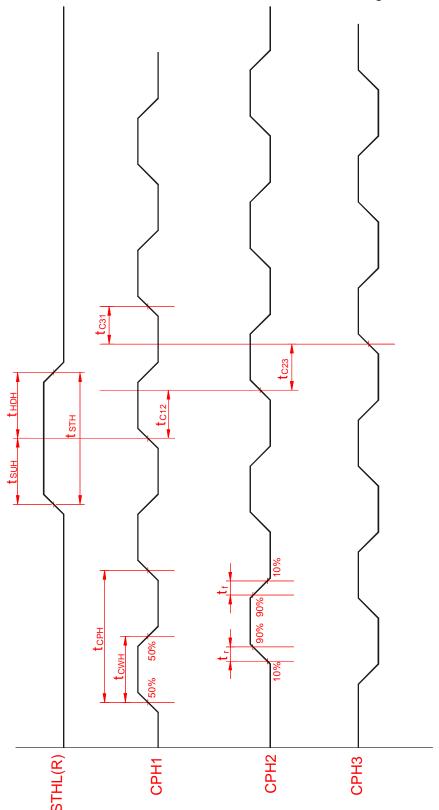


Fig.2 Sampling clock timing

Version : 0.4 Page : 17 /22

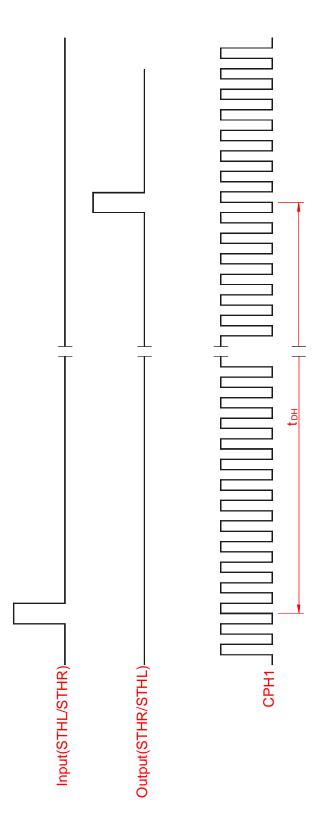
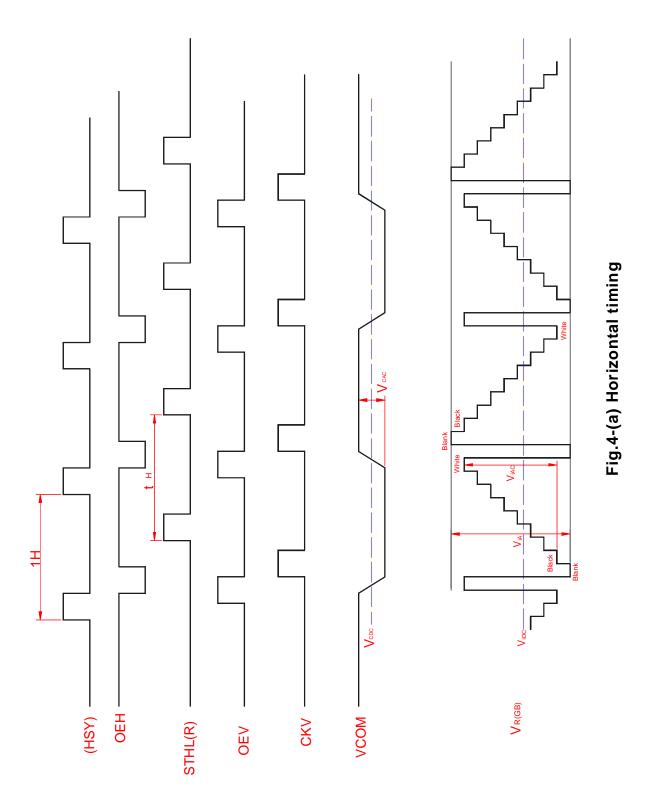
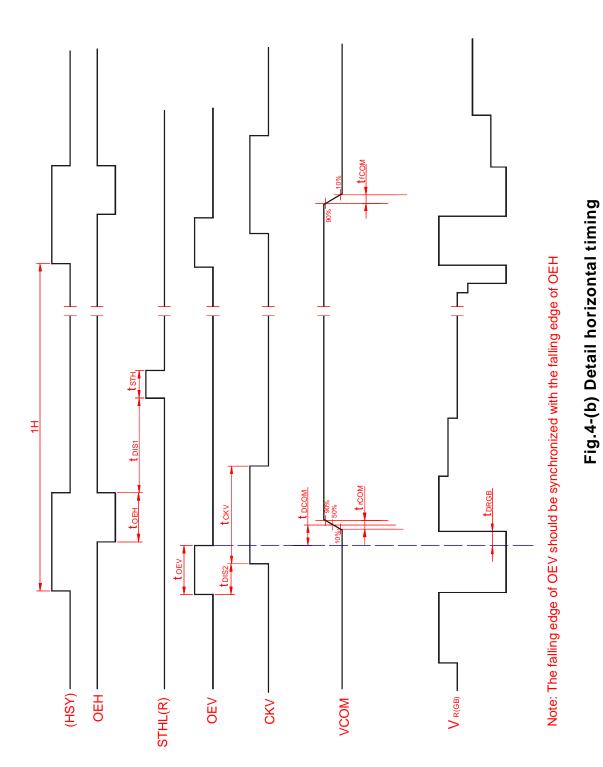



Fig.3 Horizontal display timing range



Version : 0.4 Page : 18 /22

Version : 0.4 Page : 19 /22

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Version : 0.4 Page : 20 /22

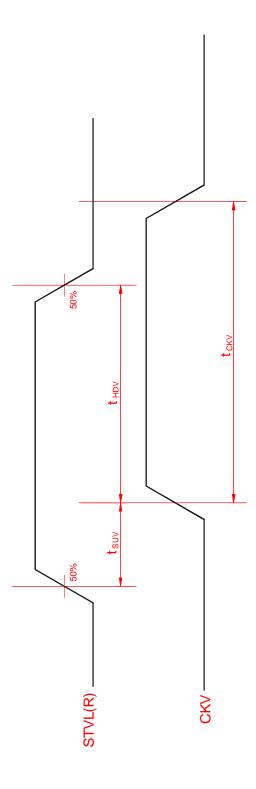


Fig.5 Vertical shift clock timing

Version : 0.4 Page : 21 /22

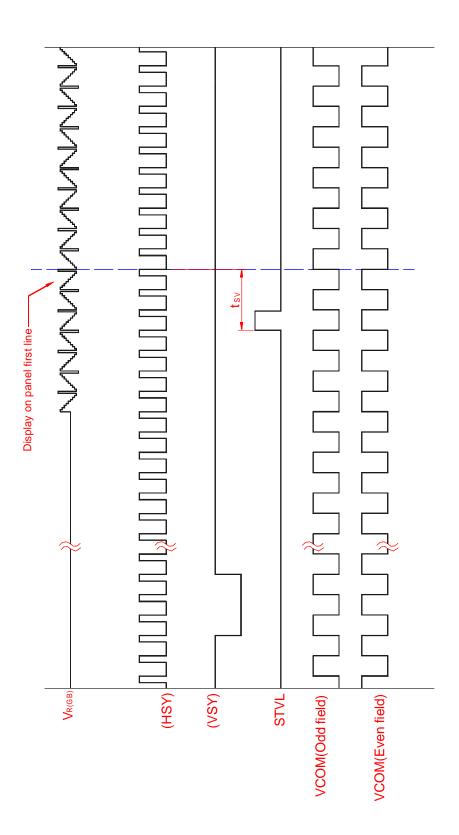


Fig.6-(a) Vertical timing (From up to down)

Version : 0.4 Page : 22 /22

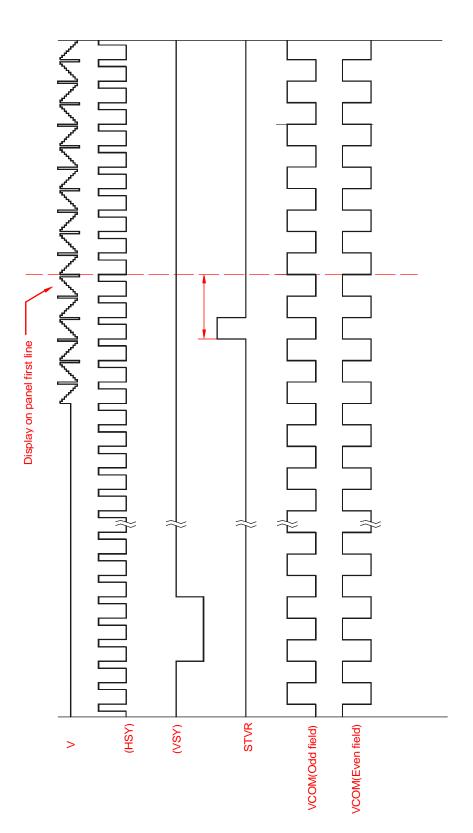


Fig.6-(b) Vertical timing (From down to up)