SmarterGlass

state-of-the-art display solutions

www.smarterglass.com 978 997 4104 sales@smarterglass.com

(V) Preliminary Specifications() Final Specifications

Module 14.0" HD Color TFT-LCD with LED Backlight design	
Model Name B140XW02 V0 (0A)	
Note (🗬)	LED Backlight with driving circuit design

Customer	Date	Approved by	Date
<u>ASUS</u>		<u>Ivy Lee</u>	<u>11/13/2008</u>
Checked & Approved by	Date	Prepared by	
		<u>Jonken Fan</u>	<u>11/13/2008</u>
Note: This Specification is sub without notice.	oject to change	NBBU Marketi AU Optronics	

40XW02 V0 Document Version: 0.0 1 of 34 B140XW02 V0 Document Version: 0.0

Contents

1	Handling Precautions	Л
	General Description	
	2.1 General Specification	
	2.2 Optical Characteristics	
3.	Functional Block Diagram	
	Absolute Maximum Ratings	
	4.1 Absolute Ratings of TFT LCD Module	
	4.2 Absolute Ratings of Backlight Unit	
	4.3 Absolute Ratings of Environment	
5.	Electrical characteristics	
	5.1 TFT LCD Module	
	5.2 Backlight Unit	
6.	Signal Characteristic	
	6.1 Pixel Format Image	
	6.2 The input data format	
	6.3 Signal Description/Pin Assignment	18
	6.4 Interface Timing	22
7.	Connector Description	. 25
	7.1 TFT LCD Module	25
8.	LED Driving Specification	. 26
	8.1 Connector Description	26
	8.2 Pin Assignment	26
9.	Vibration and Shock Test	. 27
	9.1 Vibration Test	27
	9.2 Shock Test Spec:	27
10). Reliability	. 28
11	L. Mechanical Characteristics	. 29
	11.1 LCM Outline Dimension	29
12	2. Shipping and Package	. 32
	12.1 Shipping Label Format	32
	12.2 Carton package	33
	12.3 Shipping package of palletizing sequence	
13	3. Appendix: EDID description	. 34

B140XW02 V0 Document Version: 0.0	2 of 34

Record of Revision

Ver	sion and Date	Page	Old description	New Description	Remark
0.1	2008/10/13	All	First Edition for Customer		
0.2	2008/10/27	29	Old drawing	New drawing	
0.3	2008/11/04	29	Old drawing	New drawing (with bracket zoom-in)	
0.4	2008/11/13	20	Old drawing	New drawing (with new layout)	
		29	Old drawing	New drawing (with new layout)	

B140XW02 V0 Document Version: 0.0	3 of 34

1. Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open nor modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11)After installation of the TFT Module into an enclosure (Notebook PC Bezel, for example), do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 12)Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.

13) Disconnecting power supply before handling LCD modules, it can prevent electric shock, DO NOT TOUCH the electrode parts, cables, connectors and LED circuit part of TFT module that a LED light bar build in as a light source of back light unit. High voltage is supplied to these parts when power turn on.

2. General Description

B140XW02 V0 is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel, a driver circuit, and LED backlight system. The screen format is intended to support the HD (1366(H) x 768(V)) screen and 262k colors (RGB 6-bits data driver) with LED backlight driving circuit. All input signals are LVDS interface compatible.

B140XW02 V0 is designed for a display unit of notebook style personal computer and industrial machine.

2.1 General Specification

B140XW02 V0 Document Version: 0.0

The following items are characteristics summary on the table at 25 $^\circ$ C condition:

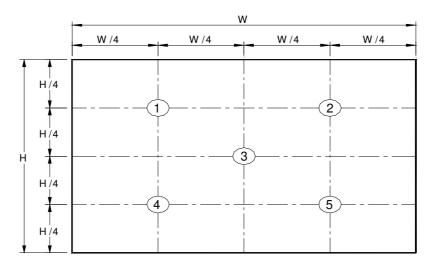
Items	Unit	Specifications			
Screen Diagonal	[mm]	14.0"			
Active Area	[mm]	309.399x17	73.952		
Pixels H x V		1366x3(RG	aB) x 768		
Pixel Pitch	[mm]	0.2265			
Pixel Format		B.G.R. Ver	tical Stripe		
Display Mode		Normally W	/hite		
White Luminance (ILED=20mA)	[cd/m ²]	220 typ. (5	points avera	ige)	
Note: ILED is LED current		187 min. (5 points average) (Note1)			
Luminance Uniformity		1.25 max. (5 points)			
Contrast Ratio		500 typ			
Response Time	[ms]	8 typ			
Nominal Input Voltage VDD	[Volt]	+3.3 typ.			
Power Consumption	[Watt]	4.5 max. (Ir	nclude Logic	and Blu po	wer) (Note1)
Weight	[Grams]	320 max.			
Physical Size with bracket &	[mm]		Min.	Тур.	Max.
bottom PCBA.		Length	329.9	330.4	330.9
		Width	198.1	198.6	199.1
		Thickness			3.6
Electrical Interface		1 channel l	_VDS		
Surface Treatment		Glare, Hardness 3H,			

5 of 34

Support Color		262K colors (RGB 6-bit)
Temperature Range Operating Storage (Non-Operating)	[°C] [°C]	0 to +50 -20 to +65
RoHS Compliance		RoHS Compliance

Note 1. Total power consumption including LED power efficiency under 4.5W max.

2.2 Optical Characteristics


The optical characteristics are measured under stable conditions at 25° C (Room Temperature) :

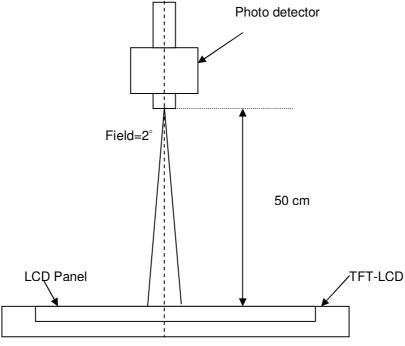
ltem	Symbol	Conditions	Min.	Тур.	Max.	Unit	Note
White Luminance		5 points average	187	220	-	cd/m ²	1, 3, 4.
	$ heta_{R}$	Horizontal (Right)	40	45	-		
Viewing Angle	θι	CR = 10 (Left)	40	45	-	degree	
Viewing Angle	<i>ф</i> н	Vertical (Upper)	10	15	-		3, 8
	¢∟	CR = 10 (Lower)	30	35	-		
Luminance Uniformity	δ 5P	5 Points	-	-	1.25		1, 2, 3
Contrast Ratio	CR		400	500	-		3, 5
Cross talk	%				4		3, 6
	Tr	Rising	-		-		
Response Time	T _f	Falling	-		-	msec	3, 7
	T _{RT}	Rising + Falling	-	8			
	Red x			TBD			
	Red y			TBD			
	Green x			TBD			
Color /	Green y			TBD			
Chromaticity Coodinates	Blue x	CIE 1931		TBD			3
	Blue y			TBD			
	White x		0.263	0.313	0.363		
	White y		0.279	0.329	0.379		
NTSC	%		-	45	-		

.....

Note 1: 5 points position (Ref: Active area)

Note 2: The luminance uniformity of 5 or13 points is defined by dividing the maximum luminance values by the minimum test point luminance

2	Maximum Brightness of five points	
δw5	=	Minimum Brightness of five points
6		Maximum Brightness of thirteen points
δ w13	= .	Minimum Brightness of thirteen points


B140XW02 V0 Document Version: 0.0	

7 of 34

AU OPTRONICS CORPORATION

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room, , and it should be measured in the center of screen.

Center of the screen

Note 4: Definition of Average Luminance of White (Y_L) :

Measure the luminance of gray level 63 at 5 points , $Y_L = [L (1) + L (2) + L (3) + L (4) + L (5)] / 5 L (x)$ is corresponding to the luminance of the point X at Figure in Note (1).

Note 5: Definition of contrast ratio:

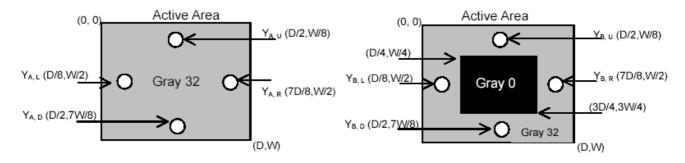
Contrast ratio is calculated with the following formula.

Contrast ratio (CR)= <u>Brightness on the "White" state</u> Brightness on the "Black" state

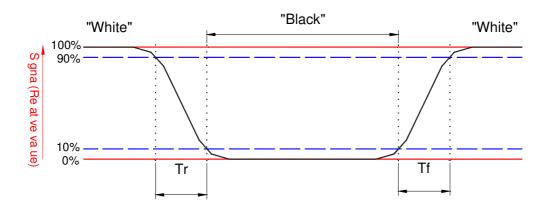
Note 6: Definition of Cross Talk (CT)

 $CT = |Y_B - Y_A| / Y_A \times 100$ (%)

Where


B140XW02 V0 Document Version: 0.0 8 of 34

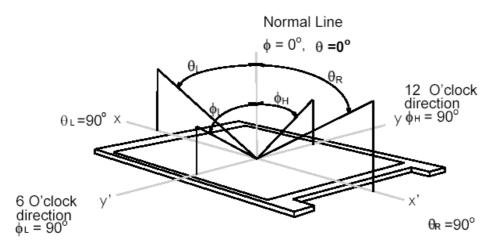
AU OPTRONICS CORPORATION


 Y_A = Luminance of measured location without gray level 0 pattern (cd/m₂)

 Y_B = Luminance of measured location with gray level 0 pattern (cd/m₂)

Note 7: Definition of response time:

The output signals of BM-7 or equivalent are measured when the input signals are changed from "Black" to "White" (falling time) and from "White" to "Black" (rising time), respectively. The response time interval between the 10% and 90% of amplitudes. Refer to figure as below.



AU OPTRONICS CORPORATION

Note 8. Definition of viewing angle

Viewing angle is the measurement of contrast ratio ≥ 10 , at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

B140XW02 V0 Document Version: 0.0	10 of 34

3. Functional Block Diagram

The following diagram shows the functional block of the 14.0 inches wide Color TFT/LCD 40 Pin (One ch/connector Module:

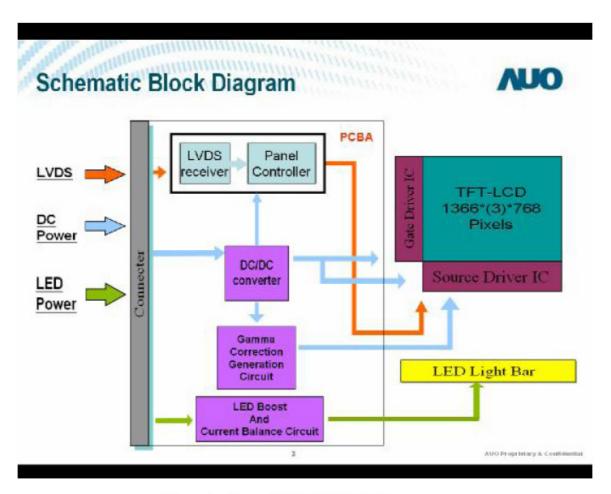


Figure 1 - General TFT LCD Block Diagram

B140XW02 V0 Document Version: 0.0	11 of 34

AU OPTRONICS CORPORATION

4. Absolute Maximum Ratings

An absolute maximum rating of the module is as following:

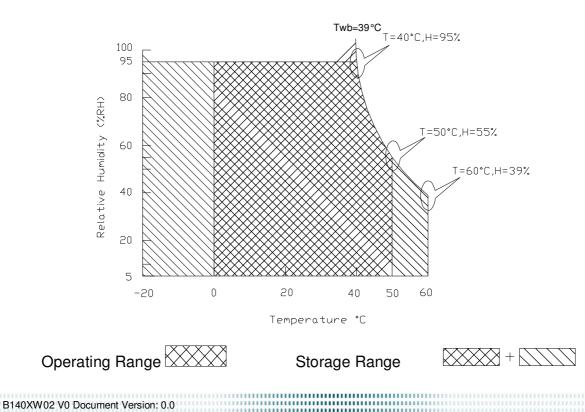
4.1 Absolute Ratings of TFT LCD Module

ltem	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive	Vin	-0.3	+4.0	[Volt]	Note 1,2

4.2 Absolute Ratings of Backlight Unit

Item	Symbol	Min	Max	Unit	Conditions
LED Driving Voltage	V_{LED}	-	36 (Row Output)	[Volt]	Note 1,2,3
LED Driving Current	I _{LED}	-	30 (Row Output)	[mA] rms	Note 1,2,3

4.3 Absolute Ratings of Environment


Item	Symbol	Min	Max	Unit	Conditions
Operating Temperature	ТОР	0	+50	[°C]	Note 4
Operation Humidity	HOP	8	95	[%RH]	Note 4
Storage Temperature	TST	-20	+65	[°C]	Note 4
Storage Humidity	HST	5	95	[%RH]	Note 4

Note 1: At Ta (25 $^\circ\!\mathrm{C}$)

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: LED specification refer to section 5.2

Note 4: For quality performance, please refer to AUO IIS (Incoming Inspection Standard).

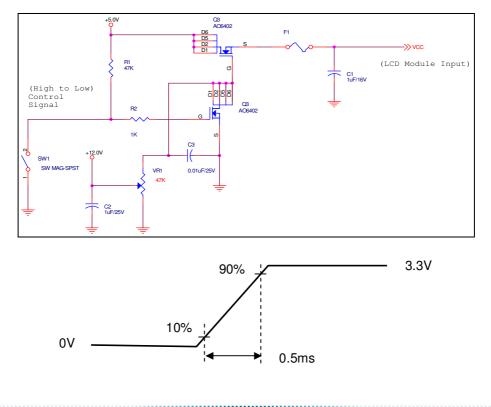
12 of 34

AU OPTRONICS CORPORATION

5. Electrical characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

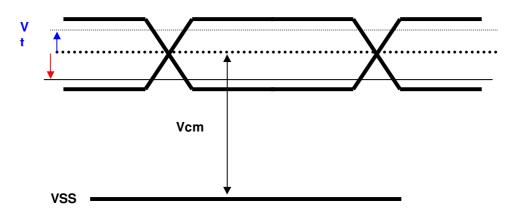

Input power specifications are as follows;

The power specification are measured under $25^\circ\!\mathrm{C}$ and frame frequency under 60Hz

Symble	Parameter	Min	Тур	Max	Units	Note
VDD	Logic/LCD Drive Voltage	3.0	3.3	3.6	[Volt]	
PDD	VDD Power		0.9	1	[Watt]	Note 1/2
IDD	IDD Current		272	333	[mA]	Note 1/2
IRush	Inrush Current			2000	[mA]	Note 3
VDDrp	Allowable Logic/LCD Drive Ripple Voltage			100	[mV] p-p	

Note 1 : Maximum Measurement Condition : Black Pattern

- Note 2 : Typical Measurement Condition: Black Pattern
- Note 3 : Measure Condition


5.1.2 Signal Electrical Characteristics

Input signals shall be low or High-impedance state when VDD is off. It is recommended to refer the specifications of THC63LVDF84A (Thine Electronics Inc.) in detail.

Signal electrical characteristics are as follows;

Parameter	Condition	Min	Мах	Unit
Vth	Differential Input High Threshold (Vcm=+1.2V)	-	100	[mV]
Vtl	Differential Input Low Threshold (Vcm=+1.2V)	-100	-	[mV]
Vcm	Differential Input Common Mode Voltage	1.125	1.375	[V]

Note: LVDS Signal Waveform

5.2 Backlight Unit

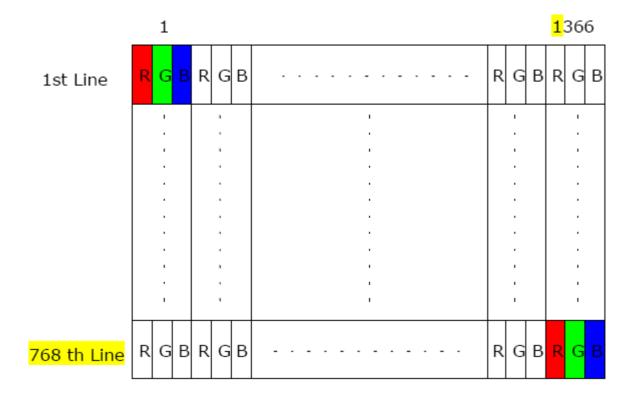
LED Parameter guideline for LED driving selection (Ref. Remark 1)

Parameter	Symbol	Min	Тур	Max	Units	Condition
LED Forward Voltage	V _F		3.2	3.4	[Volt]	(Ta=25℃)
LED Forward Current	I _F			20	[mA]	(Ta=25℃)
LED Power consumption	P_{LED}			3.5	[Watt]	(Ta=25℃) Note 1
LED Driving Input Voltage	V_{LED}	7	12	21	[Volt]	
LED Life-Time	N/A	12,000			Hour	(Ta=25°C) I _F =20mA Note 2
Output PWM frequency	F _{PWM}	100	200	20K	Hz	
Duty ratio		5		100	%	

Note 1: Calculator value for reference IF×VF =P

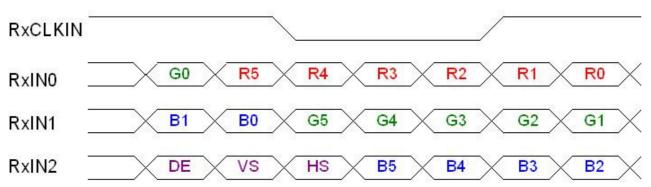
Note 2: The LED life-time define as the estimated time to 50% degradation of initial luminous.

......


AU OPTRONICS CORPORATION

6. Signal Characteristic

6.1 Pixel Format Image


B140XW02 V0 Document Version: 0.0

Following figure shows the relationship of the input signals and LCD pixel format.

6.2 The input data format

R5Red Data 5 (MSB)Red-pixel DataR4Red Data 4Each red pixel's brightness data consists ofR3Red Data 3these 6 bits pixel data.R2Red Data 2these 6 bits pixel data.R1Red Data 0 (LSB)R6d-pixel DataGreen Data 5 (MSB)G4Green Data 4G7Green Data 4G3Green Data 3G4Green Data 4G7Green Data 4G6Green Data 4G7Green Data 4G6Green Data 4G7Green Data 4G6Green Data 4G7Green Data 4G0Green Data 1G0Green Data 0 (LSB)B1Blue Data 5 (MSB)B4Blue Data 5 (MSB)B4Blue Data 4B5Blue Data 3B1Blue Data 1B0Blue Data 2B1Blue Data 1B0Blue Data 1B1Blue Data 2B1Blue Data 1B0Blue Data 3B1Blue Data 1B0Blue Data 0 (LSB)B1Blue Data 0 (LSB) </th <th>Signal Name</th> <th>Description</th> <th></th>	Signal Name	Description	
R3Red Data 3these 6 bits pixel data.R2Red Data 2R1Red Data 1R0Red Data 0 (LSB)Red-pixel DataGreen Data 5 (MSB)G4Green Data 4G3Green Data 3G2Green Data 2G1Green Data 1G0Green Data 0 (LSB)G1Green Data 1G0Green Data 3G1Green Data 4B5Blue Data 5 (MSB)B4Blue Data 4B3Blue Data 3B2Blue Data 4B3Blue Data 1B0Blue Data 1B0Blue Data 1B1Blue Data 2B1Blue Data 4B2Blue Data 4B3Blue Data 4B4Blue Data 4B1Blue Data 4B1Blue Data 4B1Blue Data 4B1Blue Data 4B1Blue Data 6 (LSB)B1Blue Data 1B0Blue Data 1B1Blue Data 0 (LSB)B1Blue Data 0 (LSB)B1Blue Data 0 (LSB)B10Data ClockThe signal is used to strobe the pixel data and DE signals. All pixel data shall be valid at the falling edge when the DE signal is high.DEDisplay TimingThis signal is strobed at the falling edge of RxCLKIN. When the signal is high, the pixel data shall be valid to be displayed.VSVertical SyncThe signal is synchronized to RxCLKIN .	-	Red Data 5 (MSB)	Red-pixel Data
R2Red Data 2R1Red Data 1R0Red Data 0 (LSB)Red-pixel DataG5Green Data 5 (MSB)G4Green Data 4G3Green Data 3G2Green Data 2G1Green Data 0 (LSB)G0Green Data 1G0Green Data 0 (LSB)Green pixel DataB5Blue Data 5 (MSB)B4Blue Data 5 (MSB)B4Blue Data 4B3Blue Data 3B2Blue Data 4B3Blue Data 3B2Blue Data 1B0Blue Data 1B0Blue Data 0 (LSB)B1Blue Data 4B1Blue Data 3B2Blue Data 4B1Blue Data 4B1Blue Data 3B2Blue Data 1B0Blue Data 0 (LSB)B1Blue Data 0 (LSB)B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1			•
R1 R0Red Data 1 Red Data 0 (LSB)R0Red-pixel DataG5Green Data 5 (MSB) G4 Green Data 4 G3Green Data 4 Each green pixel's brightness data consists of these 6 bits pixel data.G2Green Data 2 G1Green Data 1 G0G0Green Data 0 (LSB)Green-pixel DataBlue Data 5 (MSB) Blue Data 0 (LSB)Green-pixel DataBlue Data 4 Each green DataB5Blue Data 5 (MSB) Blue Data 4 Blue Data 4 Blue Data 4B4Blue Data 5 (MSB) Blue Data 3 Blue Data 3 Blue Data 4B2Blue Data 4 Blue Data 1 Blue Data 1B0Blue Data 2 Blue Data 1B1Blue Data 4 Blue Data 1B0Blue Data 1 Blue Data 1B0Blue Data 0 (LSB)B1Data ClockThe signal is used to strobe the pixel data and DE signals. All pixel data shall be valid at the falling edge when the DE signal is high.DEDisplay TimingVSVertical SyncVSVertical Sync			these 6 bits pixel data.
R0Red Data 0 (LSB)Red-pixel DataRed-pixel DataG5Green Data 5 (MSB)Green-pixel DataG4Green Data 4Each green pixel's brightness data consists of these 6 bits pixel data.G2Green Data 2G1Green Data 1G0Green Data 0 (LSB)Green-pixel DataB5Blue Data 5 (MSB)B4Blue Data 4B3Blue Data 3B2Blue Data 4B1Bue Data 2B1Blue Data 1B0Blue Data 2B1Blue Data 1B0Blue Data 1B1Blue Data 2B1Blue Data 1B0Blue Data 0 (LSB)B10Data 0 (LSB)			
Red-pixel DataG5Green Data 5 (MSB)G4Green Data 4G3Green Data 3G2Green Data 2G1Green Data 1G0Green Data 0 (LSB)Green-pixel DataB5Blue Data 5 (MSB)B4Blue Data 4B3Blue Data 3B2Blue Data 1B0Blue Data 2B1Blue Data 2B1Blue Data 4B0Blue Data 1B0Blue Data 4B1Blue Data 4B2Blue Data 4B3Blue Data 4B4Blue Data 4B1Blue Data 1B0Blue Data 1B0Blue Data 1B0Blue Data 1B0Blue Data 1B0Blue Data 1B0Blue Data 1B1Blue Data 1B0Blue Data 1B0Blue Data 1B0Blue Data 1B0Blue Data 1B1Blue Data 1B0Blue Data 1B1Blue Data 1B1Blue Data 1B1Blue Data 0 (LSB)B1Blue Data 1B2Blue Data 1B3Blue Data 1B4Blue Data 1B5B1B1Blue Data 1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B2B1 </td <td></td> <td></td> <td></td>			
G5Green Data 5 (MSB) Green Data 4Green-pixel Data Each green pixel's brightness data consists of these 6 bits pixel data.G2Green Data 2 G1Green Data 2 Green Data 1 G0Green Data 1 G0G0Green Data 0 (LSB)Blue-pixel DataB5Blue Data 5 (MSB) Green Data 3 B4Blue Data 4 Blue Data 3 B1ue Data 2 B1Blue Data 3 Blue Data 1 B0B2Blue Data 1 Blue Data 0 (LSB)Blue-pixel Data.B2Blue Data 1 Blue Data 1 B0Blue Data 0 (LSB)B1Blue Data 0 (LSB)The signal is used to strobe the pixel data and DE signals. All pixel data shall be valid at the falling edge when the DE signal is high.DEDisplay TimingThis signal is strobed at the falling edge of RxCLKIN. When the signal is high, the pixel data shall be valid to be displayed.VSVertical SyncThe signal is synchronized to RxCLKIN .	R0	Red Data 0 (LSB)	
G4Green Data 4Each green pixel's brightness data consists of these 6 bits pixel data.G3Green Data 3these 6 bits pixel data.G2Green Data 2these 6 bits pixel data.G1Green Data 1Green Data 0 (LSB)Green-pixel DataGreen-pixel DataB5Blue Data 5 (MSB)Blue-pixel DataB4Blue Data 3Each blue pixel's brightness data consists of these 6 bits pixel data.B2Blue Data 3Blue Data 2B1Blue Data 1Blue Data 1B0Blue Data 0 (LSB)Blue-pixel DataRxCLKINData ClockThe signal is used to strobe the pixel data and DE signals. All pixel data shall be valid at the falling edge when the DE signal is high.DEDisplay TimingThis signal is strobed at the falling edge of RxCLKIN. When the signal is high, the pixel data shall be valid to be displayed.VSVertical SyncThe signal is synchronized to RxCLKIN .		Red-pixel Data	
G3Green Data 3these 6 bits pixel data.G2Green Data 2G1Green Data 1G0Green Data 0 (LSB)Green-pixel DataB5Blue Data 5 (MSB)B4Blue Data 4B3Blue Data 3B2Blue Data 2B1Blue Data 0 (LSB)B1Blue Data 3B2Blue Data 1B0Blue Data 0 (LSB)B1Blue Data 0 (LSB)B1Blue Data 1B0Blue Data 1B0Blue Data 1B0Blue Data 1B1Blue Data 0 (LSB)B1Blue Data 0 (LSB)B1Data ClockThe signal is used to strobe the pixel data and DE signals. All pixel data shall be valid at the falling edge when the DE signal is high.DEDisplay TimingThis signal is strobed at the falling edge of RxCLKIN. When the signal is high, the pixel data shall be valid to be displayed.VSVertical Sync	G5	Green Data 5 (MSB)	Green-pixel Data
G2 G1 G0Green Data 2 Green Data 1 Green Data 0 (LSB)Green Data 0 (LSB)Green-pixel DataGreen-pixel DataB5 B4 B3 B1ue Data 3 B2 B1 B1 B1ue Data 0 (LSB)Blue-pixel Data Each blue pixel's brightness data consists of these 6 bits pixel data.B2 B1 B1 B1 B1ue Data 0 (LSB)Blue-pixel Data Each blue pixel's brightness data consists of these 6 bits pixel data.RxCLKIN DEData ClockThe signal is used to strobe the pixel data and DE signals. All pixel data shall be valid at the falling edge when the DE signal is high, the signal is strobed at the falling edge of RxCLKIN. When the signal is high, the pixel data shall be valid to be displayed.VSVertical SyncThe signal is synchronized to RxCLKIN .		Green Data 4	Each green pixel's brightness data consists of
G1 G0Green Data 1 Green Data 0 (LSB)G0Green Data 0 (LSB)B5 B4Blue Data 5 (MSB) Blue Data 4B4 B3 B1ue Data 3Blue Data 4 Each blue pixel's brightness data consists of these 6 bits pixel data.B2 B1 B0Blue Data 1 Blue Data 0 (LSB)B1ue-pixel DataBlue-pixel DataRxCLKINData ClockDEDisplay Timing RxCLKIN. When the signal is strobed at the falling edge of RxCLKIN. When the signal is high, the pixel data shall be valid to be displayed.VSVertical SyncThe signal is synchronized to RxCLKIN .			these 6 bits pixel data.
G0Green Data 0 (LSB)Green-pixel DataB5Blue Data 5 (MSB)B4Blue Data 4B3Blue Data 3B2Blue Data 2B1Blue Data 0 (LSB)B1Blue Data 1B0Blue Data 0 (LSB)B1ue-pixel DataRxCLKINData ClockDEDisplay TimingDEDisplay TimingVSVertical SyncVSVertical Sync			
Green-pixel DataB5Blue Data 5 (MSB)B4Blue Data 4B3Blue Data 3B2Blue Data 2B1Blue Data 1B0Blue Data 0 (LSB)Blue-pixel DataRxCLKINData ClockDEDisplay TimingDEDisplay TimingVSVertical SyncVSVertical Sync			
B5Blue Data 5 (MSB)Blue-pixel DataB4Blue Data 4Each blue pixel's brightness data consists ofB3Blue Data 3Each blue pixel's brightness data consists ofB2Blue Data 2these 6 bits pixel data.B1Blue Data 1Blue Data 0 (LSB)B1Blue-pixel DataEach blue pixel's brightness data consists ofRxCLKINData ClockThe signal is used to strobe the pixel data and DE signals. All pixel data shall be valid at the falling edge when the DE signal is high.DEDisplay TimingThis signal is strobed at the falling edge of RxCLKIN. When the signal is high, the pixel data shall be valid to be displayed.VSVertical SyncThe signal is synchronized to RxCLKIN .	G0	Green Data 0 (LSB)	
B4Blue Data 4Each blue pixel's brightness data consists of these 6 bits pixel data.B3Blue Data 3Each blue pixel's brightness data consists of these 6 bits pixel data.B2Blue Data 2Blue Data 1B0Blue Data 0 (LSB)Blue-pixel DataRxCLKINData ClockThe signal is used to strobe the pixel data and DE signals. All pixel data shall be valid at the falling edge when the DE signal is high.DEDisplay TimingThis signal is strobed at the falling edge of RxCLKIN. When the signal is high, the pixel data shall be valid to be displayed.VSVertical SyncThe signal is synchronized to RxCLKIN .		Green-pixel Data	
B3Blue Data 3these 6 bits pixel data.B2Blue Data 2B1Blue Data 1B0Blue Data 0 (LSB)Blue-pixel DataElue-pixel DataRxCLKINData ClockThe signal is used to strobe the pixel data and DE signals. All pixel data shall be valid at the falling edge when the DE signal is high.DEDisplay TimingThis signal is strobed at the falling edge of RxCLKIN. When the signal is high, the pixel data shall be valid to be displayed.VSVertical SyncThe signal is synchronized to RxCLKIN .		· · · · · · · · · · · · · · · · · · ·	Blue-pixel Data
B2Blue Data 2B1Blue Data 1B0Blue Data 0 (LSB)Blue-pixel DataRxCLKINData ClockThe signal is used to strobe the pixel data and DE signals. All pixel data shall be valid at the falling edge when the DE signal is high.DEDisplay TimingVSVertical SyncVSVertical Sync			
B1 B0Blue Data 1 Blue Data 0 (LSB)Blue-pixel DataBlue-pixel DataRxCLKINData ClockThe signal is used to strobe the pixel data and DE signals. All pixel data shall be valid at the falling edge when the DE signal is high.DEDisplay TimingThis signal is strobed at the falling edge of RxCLKIN. When the signal is high, the pixel data shall be valid to be displayed.VSVertical SyncThe signal is synchronized to RxCLKIN .			these 6 bits pixel data.
B0Blue Data 0 (LSB)Blue-pixel DataRxCLKINData ClockThe signal is used to strobe the pixel data and DE signals. All pixel data shall be valid at the falling edge when the DE signal is high.DEDisplay TimingThis signal is strobed at the falling edge of RxCLKIN. When the signal is high, the pixel data shall be valid to be displayed.VSVertical Sync			
Blue-pixel DataRxCLKINData ClockThe signal is used to strobe the pixel data and DE signals. All pixel data shall be valid at the falling edge when the DE signal is high.DEDisplay TimingThis signal is strobed at the falling edge of RxCLKIN. When the signal is high, the pixel data shall be valid to be displayed.VSVertical SyncThe signal is synchronized to RxCLKIN .			
RxCLKIN Data Clock The signal is used to strobe the pixel data and DE signals. All pixel data shall be valid at the falling edge when the DE signal is high. DE Display Timing This signal is strobed at the falling edge of RxCLKIN. When the signal is high, the pixel data shall be valid to be displayed. VS Vertical Sync The signal is synchronized to RxCLKIN .	B0	Blue Data 0 (LSB)	
DEDE signals. All pixel data shall be valid at the falling edge when the DE signal is high.DEDisplay TimingThis signal is strobed at the falling edge of RxCLKIN. When the signal is high, the pixel data shall be valid to be displayed.VSVertical SyncThe signal is synchronized to RxCLKIN .		Blue-pixel Data	
DEDisplay TimingThis signal is strobed at the falling edge of RxCLKIN. When the signal is high, the pixel data shall be valid to be displayed.VSVertical SyncThe signal is synchronized to RxCLKIN .	RxCLKIN	Data Clock	0
DEDisplay TimingThis signal is strobed at the falling edge of RxCLKIN. When the signal is high, the pixel data shall be valid to be displayed.VSVertical SyncThe signal is synchronized to RxCLKIN .			S 1
RxCLKIN. When the signal is high, the pixel data shall be valid to be displayed.VSVertical SyncVSVertical Sync		Diaplay Timing	
data shall be valid to be displayed.VSVertical SyncThe signal is synchronized to RxCLKIN .		Usplay Timing	
VS Vertical Sync The signal is synchronized to RxCLKIN.			o o i i
, , , , , , , , , , , , , , , , , , , ,	VS	Vertical Sync	
	HS	Horizontal Sync	The signal is synchronized to RxCLKIN.

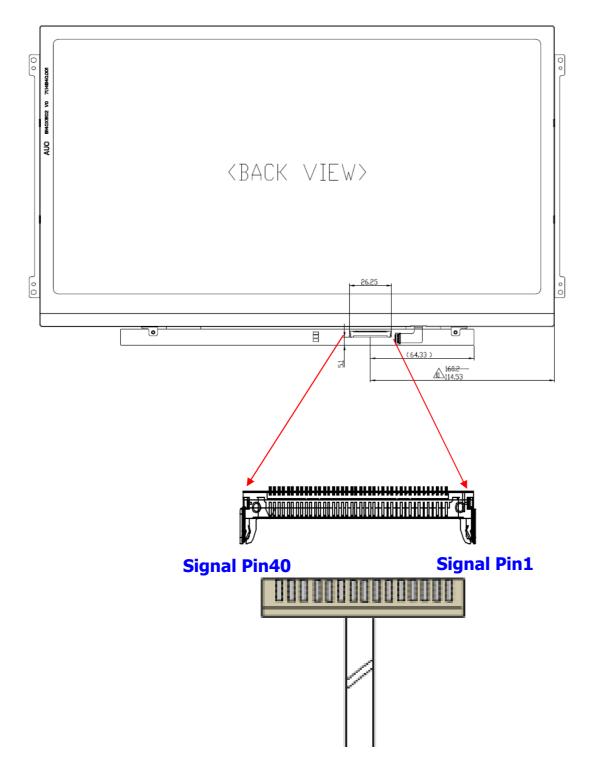
Note: Output signals from any system shall be low or High-impedance state when VDD is off.

AU OPTRONICS CORPORATION

6.3 Signal Description/Pin Assignment

LVDS is a differential signal technology for LCD interface and high speed data transfer device.

		B140XW02 V0
Pin	Signal	Description
1	NC	No Connection (Reserve)
2	VDD	PowerSupply,3.3V(typical)
3	VDD	PowerSupply,3.3V(typical)
4	DVDD	DDC 3.3Vpower
5	NC	No Connection (Reserve)
6	SCL	DDCClock
7	SDA	DDCData
8	Rin0-	-LVDSdifferential data input(R0-R5,G0)
9	Rin0+	+LVDSdifferential data input(R0-R5,G0)
10	GND	Ground
11	Rin1-	-LVDSdifferential data input(G1-G5,B0-B1)
12	Rin1+	+LVDSdifferential data input(G1-G5,B0-B1)
13	GND	Ground
14	Rin2-	-LVDSdifferential data input(B2-B5,HS,VS,DE)
15	Rin2+	+LVDSdifferential data input(B2-B5,HS,VS,DE)
16	GND	Ground
17	ClkIN-	-LVDSdifferential clock input
18	ClkIN+	+LVDSdifferential clock input
19	GND	Ground
20	NC	No Connection (Reserve)
21	NC	No Connection (Reserve)
22	GND	Ground
23	NC	No Connection (Reserve)
24	NC	No Connection (Reserve)
25	GND	Ground–Shield
26	NC	No Connection (Reserve)
27	NC	No Connection (Reserve)
28	GND	Ground–Shield
29	NC	No Connection (Reserve)
30	NC	No Connection (Reserve)
31	VLED_GND	LED Ground
32	VLED_GND	LED Ground
33	VLED_GND	LED Ground
34	NC	No Connection (Reserve)
35	PWM	System PWM Signal Input
36	LED_EN	LED enable pin(+3V Input)


37	NC	No Connection (Reserve)
38	VLED	LED Power Supply 7V-21V
39	VLED	LED Power Supply 7V-21V
40	VLED	LED Power Supply 7V-21V

B140XW02 V0 Document Version: 0.0

AU OPTRONICS CORPORATION

Rear View

.0

AU OPTRONICS CORPORATION

Note2: Input signals shall be low or High-impedance state when VDD is off.

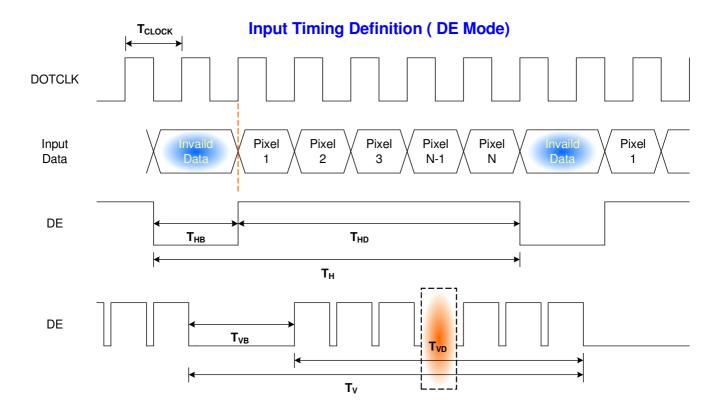
internal circuit of LVDS inputs are as following.

The module uses a 100ohm resistor between positive and negative data lines of each receiver input

Pin No.		LVDS Receiver
8 RxIN0- —	R	
9 RxIN0+		
11 RxIN1- —	R	
12 RxIN1+ —	Τ	
14 RxIN2- —	R	
15 RxIN2+ —		
17 RxCLKIN- —	R	
18 RxCLKIN+ —	Τ	

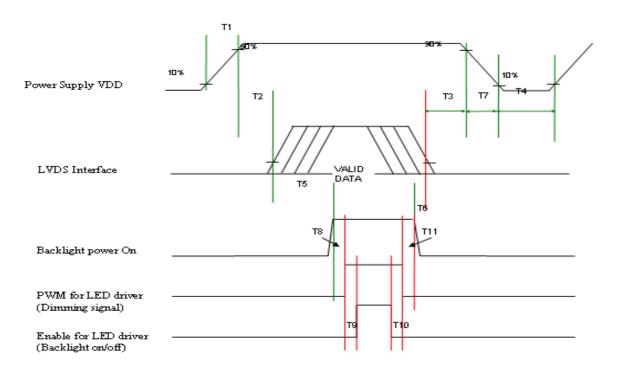
6.4 Interface Timing

6.4.1 Timing Characteristics


Basically, interface timings should match the 1366x768 /60Hz manufacturing guide line timing.

Parameter		Symbol	Min.	Тур.	Max.	Unit
Frame	Rate	-		60		Hz
Clock fre	equency	1/ T _{Clock}		72		MHz
	Period	Τv		803		
Vertical	Active	T _{VD}		768		\mathbf{T}_{Line}
Section	Blanking	T _{VB}		35		
	Period	Τ _H		1494		
Horizontal	Active	T _{HD}		1366		T _{Clock}
Section	Blanking	T _{HB}		128		

Note : DE mode only


6.4.2 Timing diagram

6.5 Power ON/OFF Sequence

VDD power on/off sequence is as follows. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off

Parameter	Value			
	Min.	Тур.	Max.	Units
T1	0.5	-	10	(ms)
T2	5	-	50	(ms)
Т3	0.5	-	50	(ms)
T4	400	-	-	(ms)
Т5	200	-	-	(ms)
T6	200	-	-	(ms)
Τ7	0	-	10	(ms)
Т8	10			(ms)
Т9	10			(ms)
T10	0			(ms)
T11	10			(ms)

B140XW02 V0 Document Version: 0.0

7. Connector Description

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

7.1 TFT LCD Module

Connector Name / Designation	For Signal Connector	
Manufacturer	IPEX or compatible	
Type / Part Number	IPEX 20455-040E-12	
Mating Housing/Part Number	IPEX 20453-040T-11	

8. LED Driving Specification

8.1 Connector Description

It is a intergrative interface and comibe into LVDS connector. The type and mating refer to section 7.

8.2 Pin Assignment

Ref. to 6.3

AU OPTRONICS CORPORATION

9. Vibration and Shock Test

9.1 Vibration Test

Test Spec:

- Test method: Non-Operation •
- Acceleration: 1.5 G, Half sine pulse
- Frequency: 10 500Hz Sine wave
- Sweep: 30 Minutes each Axis (X, Y, Z)

9.2 Shock Test Spec:

Test Spec:

- Test method: Non-Operation
- Acceleration: 240 G, Half sine pulse •
- Active time: 2 ms
- Pulse: X,Y,Z .one time for each side

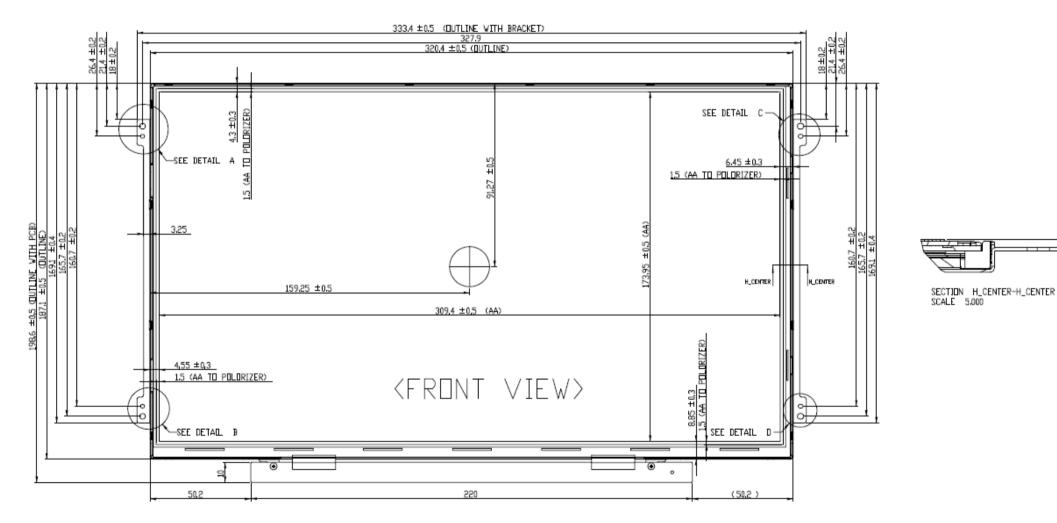
AU OPTRONICS CORPORATION

10. Reliability

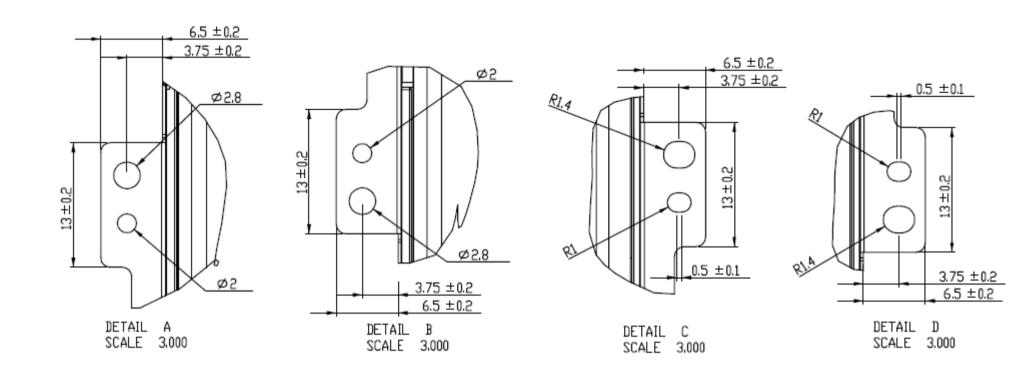
Items	Required Condition	Note
Temperature Humidity Bias	Ta= 40℃, 90%RH, 300h	
High Temperature Operation	Ta= 50℃, Dry, 300h	
Low Temperature Operation	Ta= 0℃, 300h	
High Temperature Storage	Ta= 60℃, 300h	
Low Temperature Storage	Ta= -20℃, 300h	
Thermal Shock Test	Ta=-20℃to 60℃, Duration at 30 min, 100 cycles	
ESD	Contact : ±8 KV Air : ±15 KV	Note 1

Note1: According to EN 61000-4-2, ESD class B: Some performance degradation allowed. No data lost

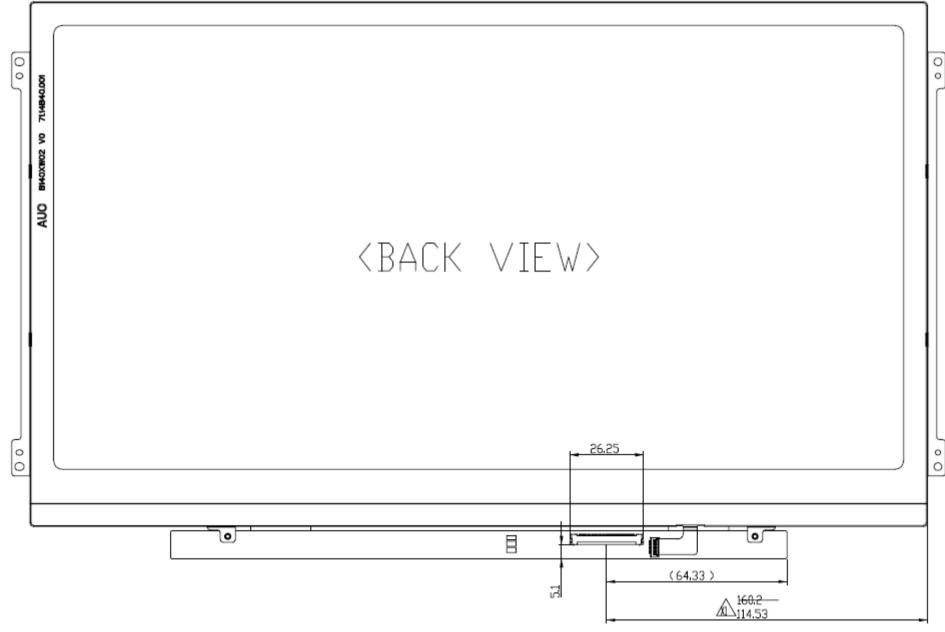
. Self-recoverable. No hardware failures.


Remark: MTBF (Excluding the LED): 30,000 hours with a confidence level 90%

AU OPTRONICS CORPORATION


11. Mechanical Characteristics

11.1 LCM Outline Dimension

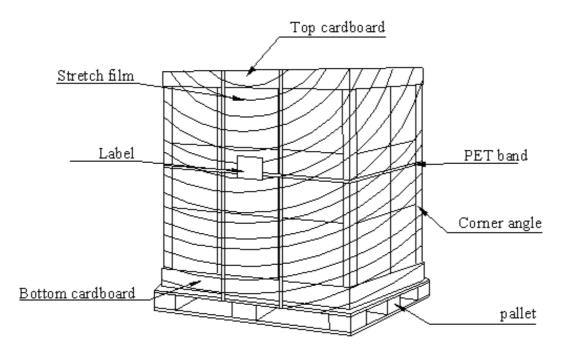

AU OPTRONICS CORPORATION

B140XW02 V0 Document Version: 0.0

AU OPTRONICS CORPORATION

B140XW02 V0 Document Version: 0.0

12.1 Shipping Label Format



12.2 Carton package

TBD

12.3 Shipping package of palletizing sequence

13. Appendix: EDID description

TBD