SmarterGlass

state-of-the-art display solutions

www.smarterglass.com 978 997 4104 sales@smarterglass.com

SPECIFICATION FOR APPROVAL

() Preliminary Spe	cification
---------------------	------------

(●) Final Specification

Title 5.8" WQVGA (400 x RGB x 240) TFT LCD
--

BUYER	
MODEL	

SUPPLIER	LG Display Co., Ltd.
*MODEL	LB058WQ1
Suffix	SD01

SIGNATURE	DATE
/	
/	
/	

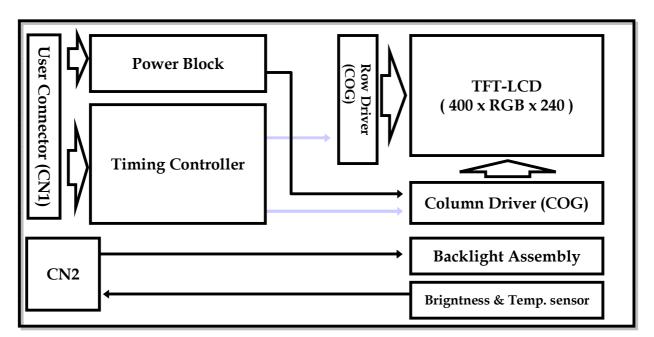
Please return 1 copy for your confirmation with your signature and comments.

	SIGNATURE	DATE		
	J.D.KIM / G.Manager			
	REVIEWED BY			
	C.S.SO / Manager			
	PREPARED BY			
,	K.K.LEE / Engineer			
Products Engineering Dept. LG. Display Co., Ltd				

Contents

No	ITEM	Page
	COVER	1
[CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	
3-1	ELECTRICAL CHARACTREISTICS	6
3-2	INTERFACE CONNECTIONS	8
3-3	SIGNAL TIMING SPECIFICATIONS	9
3-4	SIGNAL TIMING WAVEFORMS	11
3-5	COLOR INPUT DATA REFERNECE	12
3-6	POWER SEQUENCE	13
3-7	Thermistor	14
4	OPTICAL SFECIFICATIONS	15
5	MECHANICAL CHARACTERISTICS	19
6	RELIABLITY	22
7	INTERNATIONAL STANDARDS	
7-1	SAFETY	23
7-2	EMC	23
8	PACKING	
8-1	DESIGNATION OF LOT MARK	24
8-2	PACKING FORM	
		25
9	PRECAUTIONS	26

RECORD OF REVISIONS


Revision No	Revision Date	Page	Description
1.0	Oct. 9, 2009	-	Final

1. General Description

The LB058WQ1 is a Color Active Matrix Liquid Crystal Display with an Light Emitting Diode(LED) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a in plant switching type display operating in the normally black mode. This TFT-LCD has 5.8 inches diagonally measured active display area with WQVGA resolution(400 horizontal by 240 vertical pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6-bit gray scale signal for each dot, thus, presenting a palette of more than 262,144 colors. The LB058WQ1 has been designed to apply the interface method that enables low power, high speed, low EMI.

The LB058WQ1 is intended to support applications where thin thickness, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LB058WQ1 characteristics provide an excellent flat display.

General Features

Active Screen Size	5.8 inches diagonal
Outline Dimension	152.0 (H) × 97 (V) × 15.3(D) mm (Typ.)
Pixel Pitch	0.316 mm × 0.316 mm
Pixel Format	400 horiz. by 240 vert. Pixels RGB strip arrangement
Color Depth	6-bit, 262,144 colors
Luminance, White	470 cd/m²(Min.) [with LCF]
Power Consumption	Total 7.98 Watt(Max.) [LCM circuit 1.98 Watt(Max.)+LED input 6 Watt(Max.)]
Weight	275g(Typ.) 300g (Max.)
Display Operating Mode	IPS mode, normally Black
Surface Treatment	Anti-glare/Anti-reflection treatment of the front polarizer

2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

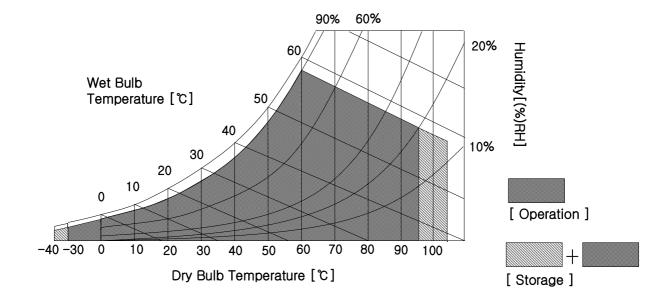

Values Parameter Symbol Units Notes Min Max at 25 ± 5 °C VCC Vdc Power Input Voltage 0.0 3.6 ٥С -40105 Storage Temperature Hst 1 Surface Of Panel Тр -4095 ٥С 1,2 Operating Temperature 90 °C Та -40 1,2,3 **Ambient**

Table 1. ABSOLUTE MAXIMUM RATINGS

Notes:

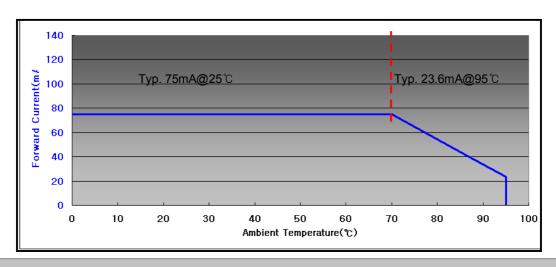
- 1. Maximum wet-bulb temperature is 58 ℃. Condensation of dew must be avoided, because it may cause electrical current leakage, and deterioration of performance and quality.
- 2. The operating temperature means that LCD Module guarantees operation of the circuit.

 All the contents of Electro-optical specifications are guaranteed under the room temperature condition.
- 3. This temperature is ambient temperature with regard to the heat which is generated under operation of circuit and backlight on.(reference value)

3. Electrical Specifications

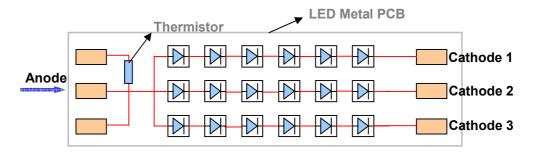
3-1. Electrical Characteristics

The LB058WQ1 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input which powers the LED, is typically generated by an LED-driver. The LED-driver is an external unit to the LCD.


Table 2. ELECTRICAL CHARACTERISTICS

Doromotor	Cymphol	Values			Lleit	Natas
Parameter	Symbol	Min	Тур	Max	Unit	Notes
MODULE:						
Power Supply Input Voltage	VCC	3.0	3.3	3.6	V_{DC}	
Power Supply Input Current	I _{cc}	195	225	600	mA	1
Power Consumption	Рс	-	0.75	1.98	Watt	1
LED:						
LED current	IL		75.0	80.0	mA	2
LED voltage	V _L		17.3	25.0	V	
LED power	P _L		3.89	6.00	W	
LED chain			3			3
Life Time continuous		20,000	_	-	Hrs	4
Life Time intermittent		54,000	-	_	Cycles	5

Note)


- 1. The specified current and power consumption are under the Vcc = 3.3V, 25%, fv = 60Hz condition whereas "Vertical Stripe Pattern" is displayed and fv is the frame frequency.
- * Typical current situation : 8X6 Chess pattern
- * Max. current situation : Full white pattern
- 2. The permissible forward current of LED vary with environmental temperature.

Ambient Temperature vs. Allowable Forward Current

3. LED PCB chain (principle sketch)

- 4. The life time is determined as the time at which brightness of LED is 50% compare to that of initial value at the typical LED current.
- 5. Intermittent cycle, at V_{LED} = typ, I_{LED} = typ.

3-2. Interface Connections

This LCD employs two interface connections, a 40 pin connector is used for the module electronics interface and the other connector is used for the integral backlight system.

The electronics interface connector is a model 9828S-40A-GFC(IRISO), manufactured by IRISO.

The mating connector part number is 9827B-40A-GFC(IRISO) or equivalent.

Table 3. MODULE CONNECTOR PIN CONFIGURATION (CN1)

Pin No.	Symbol	Description
1	GND	Ground
2	CLK	Clock
3	GND	Ground
4	RO	Red Data Signal O(LSB)
5	R1	Red Data Signal 1
6	R2	Red Data Signal 2
7	R3	Red Data Signal 3
8	R4	Red Data Signal 4
9	R5	Red Data Signal 5(MSB)
10	GND	Ground
11	Hsync	Horizontal Sync
12	GND	Ground
13	G0	Green Data Signal O(LSB)
14	G1	Green Data Signal 1
15	G2	Green Data Signal 2
16	G3	Green Data Signal 3
17	G4	Green Data Signal 4
18	G5	Green Data Signal 5(MSB)
19	GND	Ground
20	Vsync	Vertical Sync

Pin No.	Symbol	Description
21	GND	Ground
22	ВО	Blue Data Signal O(LSB)
23	B1	Blue Data Signal 1
24	B2	Blue Data Signal 2
25	В3	Blue Data Signal 3
26	B4	Blue Data Signal 4
27	B5	Blue Data Signal 5(MSB)
28	GND	Ground
29	DE	Data Enable
30	GND	Ground
31	HVR	Horizontally and Vertically Inverted
32	GND	Ground
33	GND	Ground
34	VCC	+3.3[V]
35	VCC	+3.3[V]
36	NC	-
37	NC	-
38	GND	Ground
39	NC	-
40	GND	Ground

The backlight interface connector is a model 9850S-10B-TR , manufactured by IRISO or Compatible. The mating connector part number is 9859B-10B-TR or equivalent.

Table 4. BACKLIGHT CONNECTOR PIN CONFIGURATION (CN2)

Pin	Symbol	Description
1	NTC1	Temperature Sensor Pin1
2	NTC2	Temperature Sensor Pin2
3	BL_CA_3	Backlight Chain 3 (Cathode)
4	BR_Signal	Brightness Sensor Signal
5	BL_AN	Backlight Anode of all chains
6	BR_POS	Brightness Sensor Pos. Supply Voltage (5V)
7	BL_AN	Backlight Anode of all chains
8	BL_AN	Backlight Anode of all chains
9	BL_CA_2	Backlight Chain 2 (Cathode)
10	BL_CA_1	Backlight Chain 1 (Cathode)

3-3. Signal Timing Specifications

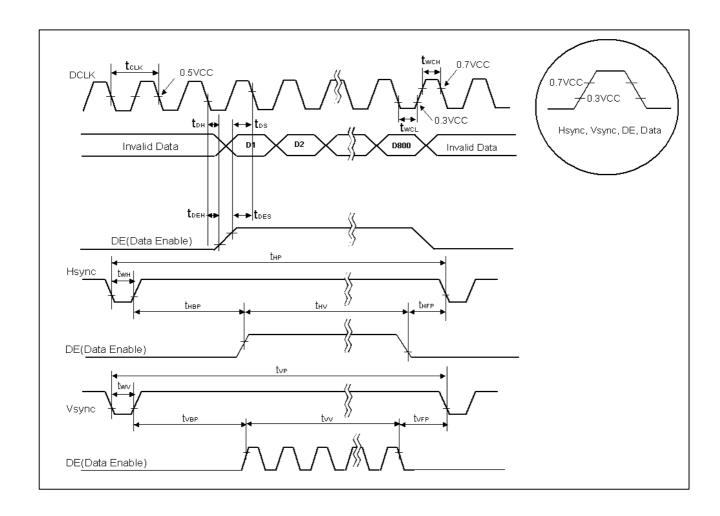

This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications for its proper operation.

Table 5-1. TIMING TABLE

	Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
	Frequency	f _{CLK}	7.7	8.3	9	MHz	
DOLK	Period	t _{CLK}	130	120	92.6	ns	
DCLK	High Level Width	t _{WCH}	4	-	-	ns	
	Low Level Width	t _{WCL}	4	-	-	ns	
CATA	Setup Time	t _{DS}	4	-	-	ns	
DATA	Hold Time	t _{DH}	4	-	-	ns	
65	Setup Time	t _{DES}	3	-	-	ns	
DE	Hold Time	t _{DEH}	3	-	-	ns	
	Period	t _{HP}	512	528	544		
	Width	t _{wH}	8	32	48		
Hsyn c	Horizontal Valid	t _{HV}	-	400	-	t _{CLK}	
C	Horizontal Back Porch	t _{HBP}	12	64	64		
	Horizontal Front Porch	t _{HFP}	8	32	32		
	Period	t _{VP}	250	263	330		
	Width	t _{wv}	2	-	-		
Vsync	Vertical Valid	t _{VV}	-	240	-	t _{HP}	
	Vertical Back Porch	t _{VBP}	6	-	-		
	Vertical Front Porch	t _{VFP}	2	-	-		

3-4. Signal Timing Waveforms

3-5. Color Input Data Reference

The brightness of each primary color (red,green and blue) is based on the 6-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 6. COLOR DATA REFERENCE

									Inp	ut Co	olor C	ata							
	Color			R	ΕD					GR	EEN					BL	UE		
		MSE						MSE					LSB						LSB
	DI 1	R5	R4	R3	R2	R1	R0	G5	G4		G2		G0	B 5	B 4	B3	B 2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (01)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
RED																			
	RED (62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (01)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
GREEN																			
	GREEN (62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	GREEN (63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	BLUE (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (01)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE																			
	BLUE (62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	BLUE (63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

3-6. Power Sequence

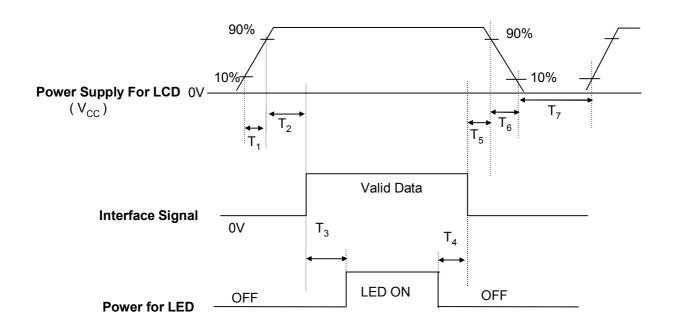
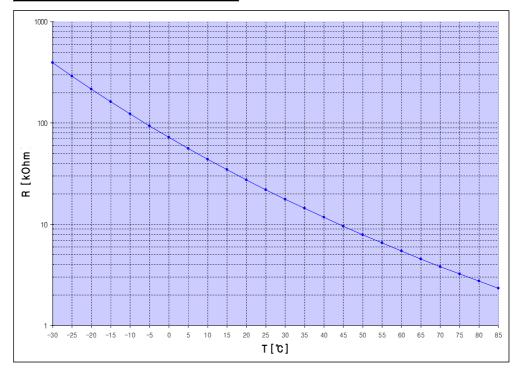


Table 7. POWER SEQUENCE TABLE

Darameter		Value	Units		
Parameter	Min.	Тур.	Office		
T ₁	0.5	-	10	(ms)	
T ₂	50	-	-	(ms)	
T ₃	100	-	-	(ms)	
T ₄	200	-	-	(ms)	
T ₅	0	-	-	(ms)	
T ₆	0	-	10	(ms)	
T ₇	400	-	-	(ms)	

Note)

- 1. Please avoid floating state of interface signal at invalid period.
- 2. When the interface signal is invalid, be sure to pull down the power supply for LCD VCC to 0V.
- 3. LED power must be turn on after power supply for LCD and interface signal are valid.


3-7. Thermistor

*NCP18XW223E03RB made by Murata Manufacturing Co., Ltd

• Resistance : 22k ohm $\pm 3\%$ • B-Constant : 3950K $\pm 3\%$

Temp. (℃)	R _{TYP.} (kohm)
-30	396.07
-25	291.02
-20	216.01
-15	161.98
-10	122.64
-5	93.70
0	72.19
+5	56.09
+10	43.91
+15	34.63
+20	27.51
+25	22.00

Temp.(℃)	R _{TYP.} (kohm)
+30	17.71
+35	14.34
+40	11.69
+45	9.58
+50	7.89
+55	6.54
+60	5.45
+65	4.56
+70	3.83
+75	3.24
+80	2.75
+85	2.34

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 30 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and Θ equal to 0° .

FIG. 1 presents additional information concerning the measurement equipment and method.

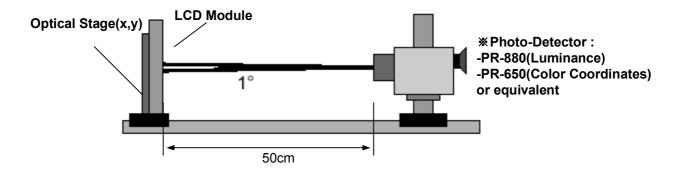


FIG. 1 Optical Characteristic Measurement Equipment and Method

Table 9. OPTICAL CHARACTERISTICS

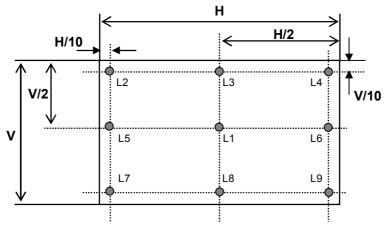
[With LCF & Enhanced Single-Peak]

Ta=25°C, VCC=3.3V, f_{V} =60Hz, f_{CLK} = 8.3MHz, I_{BL} = 75mA

	Danama akan	O. was based		Values	Linito	Mata		
	Parameter	Symbol	Min	Тур	Max	Units	Notes	
Co	ontrast Ratio	CR	630	-	-		1	
Surface	Luminance, white	L _{WH}	470	-	_	cd/m²	2	
Lumir	nance Variation	δ white	80	85	-	%	3	
Surface Luminar 30°)	nce, white(Φ=180 °Θ=-	L _{WH} LEFT	410	-	_	cd/m2		
Surface Luminar	nce, white(Φ=0 °Θ=+30 °)	L _{WH} RIGHT	310			cd/m2		
Response Time							4	
	Rise Time	Tr _R	_ 	15	20	ms		
	Decay Time	Tr _D	-	14	18	ms		
Color Coordinates					[2	
	RED	RX	0.605	0.635	0.665			
		RY	0.320	0.350	0.380			
	GREEN	GX	0.306	0.336	0.366			
		GY	0.579	0.609	0.639			
	BLUE	ВХ	0.118	0.148	0.178			
		BY	0.071	0.101	0.131			
	WHITE	WX	0.286	0.316	0.346			
	:	WY	0.318	0.348	0.378			
Viewing Angle							5	
	x axis, right(Φ=0°)	Θr	65	70	_	degree	100 ≥ CR	
	x axis, left (Φ=180°)	ΘΙ	65	70	_	degree	100 ≥ CR	
	y axis, up (Φ=90°)	Θu	25	30	_	degree	100 ≥ CR	
	y axis, down (Φ=270°)	Θd	30	40	_	degree	100 ≥ CR	
Gray Scale							6	

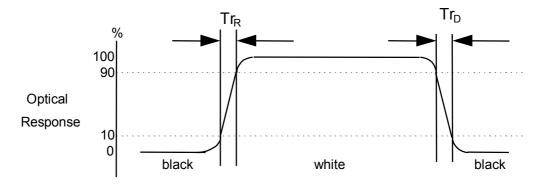
Note)

1. Contrast Ratio(CR) is defined mathematically as


- 2. Surface luminance is measured at the center point(L₁) of the LCD with all pixels displaying white at the distance of 50cm by PR-880. Color Coordinates are measured at the center point(L₁) of the LCD with all pixels displaying red, green, blue and white at the distance of 50cm by PR-650. For more information, refer to the FIG 1 and FIG 2.
- 3. Luminance % uniformity is measured for 9 point For more information see FIG 2. δ WHITE = Minimum(L1,L2, L9) \div Maximum(L1,L2, L9)
- 4. Response time is the time required for the display to transition from white to black (Rise Time, Tr_R) and from black to white(Decay Time, Tr_D). For additional information see FIG 3.
- 5. Viewing angle is the angle at which the contrast ratio is greater than 100. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4.
- 6. Gray scale specification

Gray Level	Luminance [%] (Typ)
LO	0.17
L7	0.99
L15	4.24
L23	10.08
L31	19.5
L39	32.4
L47	49.6
L55	72.4
L63	100

FIG. 2 Luminance


<measuring point for surface luminance & measuring point for luminance variation>

*H,V: ACTIVE AREA

FIG. 3 Response Time

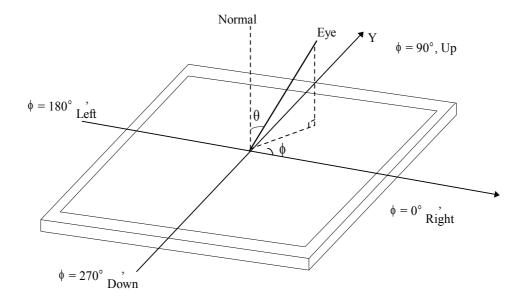
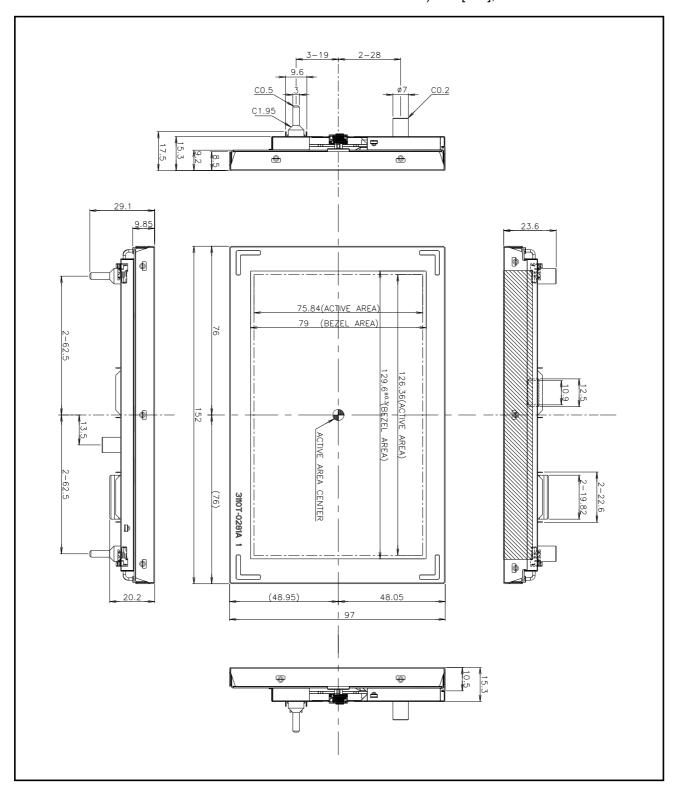

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

FIG. 4 Viewing angle

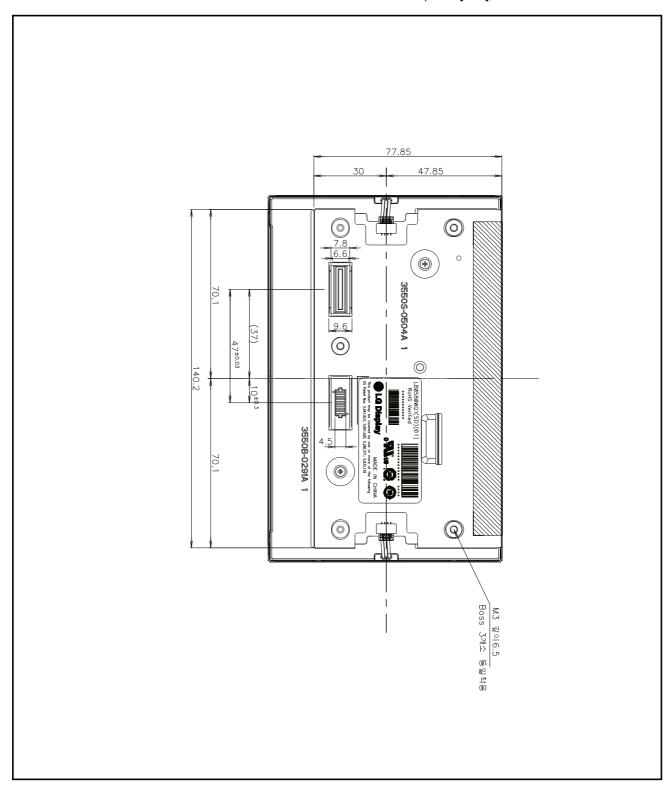
<Dimension of viewing angle range>

5. Mechanical Characteristics


The contents provide general mechanical characteristics for the model LB058WQ1. In addition the figures in the next page are detailed mechanical drawing of the LCD.

	Horizontal	152.0 mm (Typ.)			
Outline Dimension	Vertical	97.0 mm (Typ.)			
	Depth	15.3 mm (Typ.)			
Bezel Area	Horizontal	129.6 mm (Typ.)			
Dezei Alea	Vertical	79 mm (Typ.)			
Antina Diaplay Area	Horizontal	126.36 mm (Typ.)			
Active Display Area	Vertical	75.84 mm (Typ.)			
Weight	275g(Typ.) / 300g (Max.)				
Surface Treatment	Anti-glare/Anti-Reflection treatment of the front polarizer				

<FRONT VIEW>


Note) Unit:[mm], General tolerance: \pm 0.3mm

<REAR VIEW>

Note) Unit:[mm], General tolerance: \pm 0.3mm

6. Reliability

Environment test condition

No.	Test Item	Conditions
1	High Temperature Storage Test	Ta=+105℃ 500h
2	Low Temperature Storage Test	Ta=-40°C 100h
3	High Temperature Operation Test	Tp=+95℃ 200h
4	High Temperature and High Humidity Operation Test	Tp=+65℃ 93%RH 500h
5	Vibration test (non-operating)	10 - 30 Hz: ± 0.75mm 30 - 500 Hz: 3G 1 Oct./min 3x (16h sinusoidal and 8h random) in X, Y and Z direction)
6	Shock test (non-operating)	3 shocks in each direction Peak acceleration: 981 m/s ² Duration of nominal shock: 6ms Waveform: saw-tooth with slow rise(2.94 m/s) or half Z direction
7	Thermal Shock Test (non-operating)	Ta=-40°C(0.5h) ~ +95°C(0.5h) / 300 cycles
8	Electrostatic Discharge	Probe Settings: ±2kV (330Ω/150pF) Sample quantity: 3 displays 3 contact discharges on all critical positions of the display (such as all connector pins, display viewing area, backside of driver, contact ledge).

** Ta= Ambient Temperature, Tp= Panel Temperature

{ Result Evaluation Criteria }

There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.

7. International Standards

7-1. Safety

- a) UL 60950-1, Second Edition, Underwriters Laboratories Inc.
 Information Technology Equipment Safety Part 1 : General Requirements.
- b) CAN/CSA C22.2 No.60950-1-07, Second Edition, Canadian Standards Association. Information Technology Equipment Safety Part 1: General Requirements.
- c) EN 60950-1:2006 + A11:2009, European Committee for Electrotechnical Standardization(CENELEC). Information Technology Equipment Safety Part 1: General Requirements.

7-2. Environment

a) RoHS, Directive 2002/95/EC of the European Parliament and of the council of 27 January 2003

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

Α	В	С	D	Е	F	G	Н	I	J	К	L	М
---	---	---	---	---	---	---	---	---	---	---	---	---

A,B,C: SIZE(INCH) D: YEAR

E: MONTH $F \sim M$: SERIAL NO.

Note

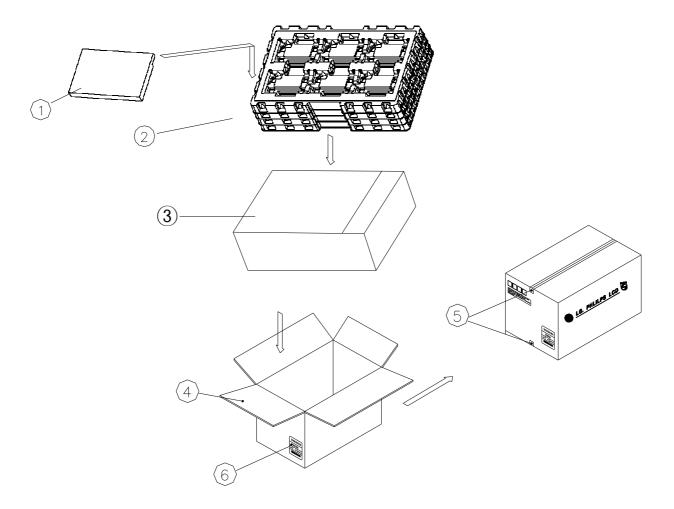
1. YEAR

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Mark	1	2	3	4	5	6	7	8	9	0

2. MONTH

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	Α	В	С

b) Location of Lot Mark


Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

a) Package quantity in one box: 18 pcs

b) Box Size : 572 mm imes 372 mm imes 156 mm

NO.	Description	Material				
1	Module	18pcs/1 Box				
2	Packing, Tray	PET				
3	Bag	PE				
4	Вох	SWR4				
5	Tape	OPP				
6	Box Label	ART Paper				

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment.
 Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2. OPERATING PRECAUTIONS

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm~200mV(Over~and~under~shoot~voltage)$
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.)

 And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.

9-3. ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object.

 It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt to remain on the polarizer.
 - Please carefully peel off the protection film without rubbing it against the polarizer.
- (3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.
- (4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.