SmarterGlass state-of-the-art display solutions www.smarterglass.com 978 997 4104 sales@smarterglass.com # NL8060BC31-17 # 31 cm (12.1 inches), 800×600 pixels, 262144 colors High luminance, Wide viewing angle, Reversible scan direction #### DESCRIPTION NL8060BC31-17 is a TFT (thin film transistor) active matrix color liquid crystal display (LCD) module comprising amorphous silicon TFT attached to each signal electrode, a driving circuit, and a backlight. NL8060BC31-17 has a built-in backlight. The backlight includes long-life-lamps and the lamps are replaceable with a holder. The 31 cm diagonal display area contains 800 × 600 pixels and can display 262144 color simultaneously. NL8060BC31-17 is suitable for industrial application use, because the viewing angle is wide and the luminance is high. Also, the viewing direction is selectable either upper or lower side by changing scan direction. #### **FEATURES** - High luminance (350 cd/m², at I_L= 5mArms/lamp) - · Wide viewing angle (with Retardation film) - · Low reflection - · Reversible scan direction - 6-bit digital RGB input signals - · Data enable (DE) function - Smooth polarizer surface (no antiglare treatment) - · Edge type backlight with two long-life-time lamps (one lamp holder) - · Lamp holder replaceable #### **APPLICATIONS** - · Display terminals for control system - · Monitors for process controller The information in this document is subject to change without notice. Please confirm with the delivery specification before starting to design the system. #### STRUCTURE AND FUNCTIONS A color TFT (thin film transistor) LCD module is comprised of a TFT liquid crystal panel structure, LSIs for driving the TFT array, and a backlight assembly. The TFT panel structure is created by sandwiching liquid crystal material in the narrow gap between a TFT array glass substrate and a color filter glass substrate. After the driver LSIs are connected to the panel, the backlight assembly is attached to the backside of the panel. RGB (red, green, blue) data signals from a source system is modulated into a form suitable for active matrix addressing by the onboard signal processor and sent to the driver LSIs which in turn addresses the individual TFT cells. Acting as an electro-optical switch, each TFT cell regulates light transmission from the backlight assembly when activated by the data source. By regulating the amount of light passing through the array of red, green, and blue dots, color images are created with clarity. #### **OUTLINE OF CHARACTERISTICS (at room temperature)** | Item | Descr pt on | | | | | | | |---|---|--|--|--|--|--|--| | D sp ay area | 246.0 (H) × 184.5 (V) mm | | | | | | | | Dr ve system | a-S TFT act ve matr x | | | | | | | | D sp ay co ors | 262,144 co ors | | | | | | | | Number of p xe s | 800 × 600 p xe s | | | | | | | | P xe arrangement | RGB vert ca str pe | | | | | | | | P xe p tch | 0.3075 (H) × 0.3075 (V) mm | | | | | | | | Modu e s ze | 280.0 (H) × 210.0 (V) × 13.0 (D) mm (typ.) | | | | | | | | We ght | 750 (typ.) | | | | | | | | Contrast rat o | 350:1 (typ.) | | | | | | | | V ew ng ang e
(more than the contrast rat o of 10:1) | Hor zonta : 55° (typ. eft s de, r ght s de) Vert ca : 40° (typ. up s de), 50° (typ. down s de) | | | | | | | | Des gned v ew ng d rect on | W der v ew ng ang e w th contrast rat o : down s de (6 o'c ock, norma scan) up s de (12 o'c ock, reverse scan) W der v ew ng ang e w thout mage reversa: up s de (12 o'c ock, norma scan) down s de (6 o'c ock, reverse scan) Opt mum graysca e (γ = 2.2) : perpend cu ar | | | | | | | | Co or gamut | 43% (typ. at center, to NTSC) | | | | | | | | Response t me | 15 ms (typ.), "wh te 100%" to "b ack 10%" | | | | | | | | Lum nance | 350 cd/m² (typ.) (Lamp current: I _L = 5 mArms per amp) | | | | | | | | S gna system | 6-bts gnas for each of RGB pr mary coors, synchronous s gnas (Hsync, Vsync), dot c ock (CLK) | | | | | | | | Supp y vo tage | 3.3 V [5.0 V] (Log c, LCD dr v ng) | | | | | | | | Back ght | Edge ght type, two cod cathode fuorescent ampin a holder • Lamp holder: Part No.121LHS15 • Recommended invertor: Part No. 121PW111 | | | | | | | | Power consumpt on | 7.0 W (typ. at 3.3 V, wth a recommended nverter) | | | | | | | #### **BASIC STRUCTURE** Note 1: GND is not connected to FG (Frame Ground) in the LCD module. #### **GENERAL SPECIFICATIONS** | Item | Spec f cat on | Unt | |------------------|---|-------| | Modu e s ze | 280.0 ± 0.5 (H) × 210.0 ± 0.5 (V) × 13.7 max. (D) | mm | | D sp ay area | 246.0 (H) × 184.5 (V) [D agona d sp ay area: 31 cm (Type 12.1)] | mm | | Number of p xe s | 800 × 3 (H) × 600 (V) | p xe | | Dot p tch | 0.1025 (H) × 0.3075 (V) | mm | | P xe p tch | 0.3075 (H) × 0.3075 (V) | mm | | P xe arrangement | RGB (Red, Green, Bue) vert castr pe | _ | | D sp ay co ors | 262,144 | co or | | We ght | 780 (max.) | g | #### **ABSOLUTE MAXIMUM RATINGS** | Parameter Symbo | | Ratng | Unt | Rem | narks | | |------------------------|-----|--|------------------|-----------------|-----------------|--| | Supp y vo tage | Vcc | -0.3 to 6.5 | V | | | | | Input vo tage | Vı | -0.3 to Vcc + 0.3 | V | Ta = | 25°C | | | Lamp vo tage | VL | 1800 | V _{rms} | | | | | Storage temp. | Тѕт | -20 to 60 | °C | - | | | | Operat ng temp. | Тор | 0 to 50 | °C | Modu e surface* | | | | Re at ve Hum d ty (RH) | | ≤ 95 | % | Ta ≤ 40°C | No condensat on | | | | | ≤ 85 | % | 40 < Ta ≤ 50°C | | | | Abso ute hum d ty | | Abso ute hum d ty sha not exceed Ta = 50°C, RH=85% | g/m³ | Ta > 50°C | | | ^{*} Measured at the panel surface (including self-heat) # **ELECTRICAL CHARACTERISTICS** # (1) Logic LCD driving $T_a = 25^{\circ}C$ | Parameter | Symbo | M n. | Тур. | Max. | Un t | Remarks | |------------------------|-------|---------------|----------------|---------------|------|------------------------------| | Supp y vo tage | Vcc | 3.0
(4.75) | 3.3
(5.0) | 3.6
(5.25) | V | Vcc = 3.3 V
(Vcc = 5.0 V) | | Log c nput "L" vo tage | VIL | 0 | - | Vcc × 0.3 | V | CMOS eve | | Log c nput "H" vo tage | VIH | Vcc × 0.7 | 1 | Vcc | ٧ | | | Supp y current | Icc | -
- | * 320
(240) | 600
(500) | mA | Vcc = 3.3 V
(Vcc = 5.0 V) | ^{*} Checker flag pattern (in EIAJ ED-2522) #### (2) Backlight $Ta = 25^{\circ}C$ | Parameter | Symbo | M n. | Тур. | Max. | Un t | Remarks | |----------------------|------------|-------------------|------|------|------|-----------| | Lamp current | lι | 2.0 Note 1 | 5.0 | 5.5 | mArm | at a amp | | Lamp vo tage | VL | - | 600 | - | Vrms | I∟= 5mA | | Lamp turn on vo tage | V s | 960 | - | - | Vrms | Ta = 25°C | | Note 2 | | 1200 | - | - | | Ta = 0°C | | Osc ator frequency | Ft | 58 | 65 | 69 | kHz | Note 3 | **Note 1:** In an atmosphere of below 10°C, keep the lamp current more than 3.0 mArms in order to prevent the lamp from blinking. Note 2: The phase of the supply voltage for lamps must keep same one. Note 3: Recommended value of "Ft". • Ft is within the specification. and • Ft = 1/4th × (2n-1) th: Hsync period n: a natural number (1, 2, 3...) If Ft is out of the recommended value, interference between Ft frequency and Hsync frequency may cause beat on the display. #### SUPPLY VOLTAGE SEQUENCE Signals: CLK, Hsync, Vsync, DE, R0-R5, G0-G5, B0-B5 - **Notes1.** The supply voltage for input signals should be the same as Vcc. - 2. Turn on the backlight within the LCD operation period. When the backlight turns on before LCD operation or the LCD operation turns off before the backlight turns off, the display may momentarily become white. - When the power is off, please keep whole signals (Hsync, Vsync, CLK, DE, R0-R5, G0-G5, B0-B5) low level or high impedance. - **4.** Wrong power sequence may damage to the module. - 5. The signal should not be down during operation. Even if signal could recover, LCD module can not be operated correctly, the display may be un-uniformity. In case signal is down, Vcc should be turned off, and then turn Vcc and signal on as above sequence. #### INTERFACE AND CONNECTOR PIN ASSIGNMENT #### (1) Interface signals, power supply CN1: DF9-41P-1V (HIROSE ELECTRIC CO., LTD.) Adaptable socket: DF9-41S-1V (HIROSE ELECTRIC CO., LTD.) or IL-310-T41S-VF (Japan Aviation Electronics Industry Limited (JAE) | P n No. | Symbo | Funct on | |---------|-------|------------------| | 1 | GND | Ground | | 2 | CLK | Dot c ock | | 3 | GND | Ground | | 4 | Hsync | Hor zonta sync. | | 5 | Vsync | Vert ca sync. | | 6 | GND | Ground | | 7 | GND | Ground | | 8 | GND | Ground | | 9 | R0 | Red data (LSB) | | 10 | R1 | Red data | | 11 | R2 | Red data | | 12 | GND | Ground | | 13 | R3 | Red data | | 14 | R4 | Red data | | 15 | R5 | Red data (MSB) | | 16 | GND | Ground | | 17 | GND | Ground | | 18 | GND | Ground | | 19 | G0 | Green data (LSB) | | 20 | G1 | Green data | | 21 | G2 | Green data | | P n No. | Symbo | Funct on | |---------|-------|------------------------------| | 22 | GND | Ground | | 23 | G3 | Green data | | 24 | G4 | Green data | | 25 | G5 | Green data (MSB) | | 26 | GND | Ground | | 27 | GND | Ground | | 28 | GND | Ground | | 29 | B0 | B ue data (LSB) | | 30 | B1 | B ue data | | 31 | B2 | B ue data | | 32 | GND | Ground | | 33 | B3 | B ue data | | 34 | B4 | B ue data | | 35 | B5 | B ue data (MSB) | | 36 | GND | Ground | | 37 | DE | Data enab e s gna | | 38 | N.C. | Not Connect on | | 39 | Vcc | Power supp y Note 1 | | 40 | Vcc | Power supp y Note 1 | | 41 | DPS | Scan d rect on se ect Note 2 | LSB: Least S gn f cant B t MSB: Most S gn f cant B t Notes 1. DE/This function recognizes Fixed or DE mode whe Vsync rises. Low = DE mode High = Fixed mode Notes 2. DPS/DPS changes scan direction (normal scan and reverse scan). Low or Open = Normal scan High = Reverse scan See DISPLAY POSITION about the scan directions. #### (2) Lamp connector CN2: BHR-03VS-1 Adaptable socket: SM03 (4.0) B-BHS-TB Supplier: J.S.T TRADING COMPANY, LTD. | P n No. | Symbo | Funct on | | | | | |---------|-------|----------------------|--|--|--|--| | 1 | VL | Low vo tage term na | | | | | | 2 | Vн | H gh vo tage term na | | | | | | 3 | Vн | H gh vo tage term na | | | | | * V_H and V_L must be connected correctly. If you make a mistake to connect, you will get hurt and the module will break. #### (3) Connection of recommended Inverter: 121PW111 CN₁ Part No.: LZ-5P-SL-SMT Adaptable socket: LZ-5S-SC3 Supplier: Japan Aviation Electronics Industry Limited (JAE) | P n No. | Symbo | Funct on | | | | | |---------|------------------|-------------------------|--|--|--|--| | 1 | V _{DDB} | Power supp y (12 V) | | | | | | 2 | V _{DDB} | Power supp y (12 V) | | | | | | 3 | GNDB | Back ght ground | | | | | | 4 | GNDB | Back ght ground | | | | | | 5 | BRTHL | Lum nance contro Note 1 | | | | | Note 1: BRTHL = High (+5 V) or open : High luminance (100%) BRTHL = Low (GNDB level) : Low luminance (20%) CN3 Part No.: IL-Z-3PL-SMTY Adaptable socket: IL-Z-3S-S125C3 Supplier: Japan Aviation Electronics Industry Limited (JAE) | P n No. | Symbo | Funct on | | | | | | | |---------|-------|-----------------------|--------|--|--|--|--|--| | 1 | BRTC | Back ght ON/OFF s gna | Note 1 | | | | | | | 2 | BRTH | Lum nance contro nput | Note 2 | | | | | | | 3 | BRTL | Lum nance contro nput | Note 2 | | | | | | Notes 1. BRTC = High (+5 V) or Open : Backlight "ON" BRTC = Low (GNDB level) : Backlight "OFF" #### 2. <1> A way of luminance control by a variable resistor. This way works when BRTHL (No.5 pin) of CN1 is opened. $\label{eq:mating variable resistor} \begin{array}{ll} \mbox{Hating variable resistor} & : & 10 \ \mbox{k}\Omega \ \pm 5 \ \% \\ \mbox{Minimum luminance (20\%)} & : & \mbox{R} = 0 \ \Omega \\ \mbox{Maximum luminance (100\%)} : & \mbox{R} = 10 \ \mbox{k}\Omega \\ \end{array}$ #### <2> A way of luminance control by a voltage BRTL and BRTHL are opened. The range of input voltage between BRTH and GNDB is as follows. Minimum luminance (20%, typ.) : 3.45 VMaximum luminance (100%) : $\leq 1.0 \text{ V}$ # (4) Connector location <Inverter side Pin arrangement of CN1> #### DISPLAY COLORS vs. INPUT DATA SIGNALS | Bas c co ors | D sp ay co ors | ay co ors Data s gna (0: Low eve , 1: Hgh eve) |--|-----------------|---|----|----|----|--------|----|----|----|----|----|--------|----|----|----|----|----|--------|----|----| | Bue grayscale Bue Red 1 | | | R5 | R4 | R3 | R2 | R1 | R0 | G5 | G4 | G3 | G2 | G1 | G0 | B5 | B4 | B3 | B2 | B1 | B0 | | Bas c c o ors Red | | B ack | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Bas c co ors Magenta 1 | | B ue | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | Basc co ors Green O O O O O O O O O | | Red | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Green graysca e Green graysca e Green graysca e Fight g | Basic colors | Magenta | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | Ye ow | Bac 6 66 616 | | 0 | 0 | | 0 | | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | White | | Cyan | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Back | | | 1 | 1 | | 1 | | 1 | | | | | 1 | 1 | 0 | | 0 | | 0 | | | Red graysca e Dark | | Wh te | 1 | | | | | 1 | | | | | | | | | | | | | | Red graysca e Dark | | B ack | _ | | | | | | _ | | | | | | - | | | | | | | Red graysca e 1 | | | _ | | | | | | | | | | | | | | | | | | | Red graysca e | | Dark | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Brght 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 1 | Red | Red graysca e | Red | | ↓ | Red 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 | | Br ght | Back 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | - | | | | | | | | | | | | _ | | | | | | | Bue graysca e Dark 0 0 0 0 0 0 0 0 0 | | | - | | | | | | | | | | | | | | | | | | | Dark 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | B ack | _ | | | | | | _ | | | | | | - | | | | | | | Green graysca e 1 | | | _ | | | | | | _ | | | | | | - | | | | | | | Green graysca e | | | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Brght 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 | | Ť | B ack | Green graysca e | B ack | | ↓ | _ | • | • | | • | • | | | | | • | | _ | • | • | | • | 0 | | Green 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 <td></td> <td>Brgnt</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | Brgnt | | | | | | | | | | - | | | | | | | | | | B ack | | Croon | _ | | | | | | | | | | | | | | | | | | | B ue graysca e Dark 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | B ue graysca e Dark 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 Brght 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 | | Dauk | _ | | | | | | _ | | | | | | _ | | | | | | | B ue graysca e | | Dark | _ | | | | | | | | | | | | - | | | | | | | B ue graysca e Brght 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 | | | | J | J | ı | J | J | | U | J | ı | J | J | J | J | J | ı | ' | J | | Brght 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 | Bue graveca e | | | | | l
I | | | | | | l
I | | | | | | l
I | | | | 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 | D do glaysoa e | 1 | | | | l
I | | | | | |
 | | | | | | l
I | | | | 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 | | v
Braht | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1
1 | Ω | 1 | | | | Di giit | _ | | | | | | | | | | | | | | - | | | | | I BUE I U U U U U U U U U U U U U I I I I I | | B ue | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | **Note** Colors are developed in combination with 6-bit signals (64 steps in grayscale) of each primary red, green, and blue color. This process can result in up to 262144 ($64 \times 64 \times 64$) colors. # **INPUT SIGNAL TIMING** # (1) Input signal specifications | | Parameter | Symbo | M n. | Тур. | Max. | Unt | Remarks | |--------------------|--------------------|--------|------|--------|------|-----|-------------------| | CLK | Frequency | 1/tc | 34.0 | 38.362 | 40.0 | MHz | 26.067 ns (typ.) | | | Duty | tch/tc | 0.4 | 0.5 | 0.6 | _ | - | | | R se, fa | tcrf | - | - | 10 | ns | - | | Hsync | Per od | th | 24.3 | 26.693 | 1 | μS | 37.468 kHz (typ.) | | | | | 829 | 1024 | - | CLK | | | | D sp ay per od | thd | | 800 | | CLK | - | | | Front-porch | thf | _ | 24 | _ | CLK | F xed mode | | | | | 4 | 24 | - | CLK | DE mode | | | Pu se w dth | thp | 12 | 72 | 127 | CLK | F xed mode | | | | | 12 | 72 | 1 | CLK | DE mode | | | Back-porch | thb | 73 | 128 | 198 | CLK | F xed mode | | | | | 13 | 128 | 509 | CLK | DE mode | | | thp | + thb | | 200 | | CLK | F xed mode | | | | | 25 | 200 | 511 | CLK | DE mode | | | CLK-Hsync t m ng | thch | 10 | - | - | ns | - | | | Hsync-CLK t m ng | thcs | 8 | - | - | ns | - | | | Hsync-Vsync t m ng | thv | 1 | _ | - | CLK | - | | | Vsync-Hsync t m ng | tvs | 15 | - | - | ns | - | | | R se, fa | thrf | - | - | 10 | ns | - | | Vsync | Per od | tv | 16.1 | 16.683 | 17.2 | ms | 59.95 Hz (typ.) | | | | | 603 | 625 | ı | Н | | | | D sp ay per od | tvd | | 600 | | Н | | | | Front-porch | tvf | - | 1 | ı | Н | F xed mode | | | | | 1 | 1 | 1 | Н | DE mode | | | Pu se w dth | tvp | 1 | 2 | 23 | Н | F xed mode | | | | | 1 | 2 | 1 | Н | DE mode | | | Back-porch | tvb | 1 | 22 | 23 | Н | F xed mode | | | | | 1 | 22 | - | Н | DE mode | | | tvp | + tvb | | 24 | | Н | F xed mode | | | | | 2 | 24 | 254 | Н | DE mode | | | R se, fa | tvrf | _ | _ | 10 | ns | - | | DATA | CLK-DATA t m ng | tds | 8 | - | - | ns | - | | R0 – R5
G0 – G5 | DATA-CLK t m ng | tdh | 10 | _ | _ | ns | - | | B0 – B5 | R se, fa | tdrf | - | - | 10 | ns | - | | DE | DE-CLK t m ng | tes | 8 | - | - | ns | - | | | CLK-DE t m ng | teh | 10 | - | - | ns | | | | R se, fa | terf | - | - | 10 | ns | | ^{*} All of parameters should be kept in the specified range. # (2) Definition of input signal timing #### <Vertical> #### <Horizontal> Note These do not exist as signals. # (3) Input signal timing chart #### **DISPLAY POSITION** # Normal scan (DPS = "Low" or "Open") | D (0, 1) | D (1, 1) |
D (X, 1) |
D (798, 1) | D (799, 1) | |------------|------------|----------------|------------------|--------------| | D (0, 1) | D (1, 1) |
D (X, 1) |
D (798, 1) | D (799, 1) | | | |
- | | 1 | | D (0, Y) | D (1, Y) |
D (X, Y) |
D (798, Y) | D (799, Y) | | | | |
1 | 1 | | D (0, 598) | D (1, 598) |
D (X, 598) |
D (798, 598) | D (799, 598) | | D (0, 599) | D (1, 599) |
D (X, 599) |
D (798, 599) | D (799, 599) | # Reverse scan (DPS = "High") | D (799,599) | D (798,599) |
D (X, 599) |
D (1,599) | D (0,599) | |-------------|-------------|----------------|---------------|-----------| | D (799,598) | D (798,598) |
D (X, 598) |
D (1,598) | D (0,598) | | 1 | 1 | | | 1 | | D (799, Y) | D (798, Y) |
D (X, Y) |
D (1, Y) | D (0, Y) | | 1 | | | | | | D (799, 1) | D (798, 1) |
D (X, 1) |
D (1, 1) | D (0, 1) | | D (799, 0) | D (798, 0) |
D (X, 0) |
D (1, 0) | D (0, 0) | Reverse scan #### Normal scan ^{*} Below drawings show relations between the scan direction and the viewing direction. #### **OPTICAL CHARACTERISTICS** $Ta = 25^{\circ}C$ Note 1 | Item | Symbo s | Cond t ons | M n. | Тур. | Max. | Un t | Remarks | |----------------------|---------|------------|------|------|------|-------------------|---------| | Contrast rat o | CR | Note 2 | 200 | 350 | _ | _ | Note 3 | | Lum nance | Lumax. | Note 2 | 270 | 350 | - | cd/m ² | Note 4 | | Lum nance un form ty | - | max./m n. | - | - | 1.4 | - | Note 5 | #### Reference data | Item | | Symbo s | Cond t ons | M n. | Тур. | Max. | Unt | Remarks | |---------------|-----------|-------------|---------------------------|------|------|------|------|---------| | Co or gamut | | С | at center, to NTSC | 35 | 43 | - | % | - | | V ew ng | Hor zonta | <i>θ</i> x+ | CR > 10, θ y = ±0° | 45 | 55 | ı | deg. | Note 7 | | ang e range | | <i>θ</i> х– | CR > 10, θ y = ±0° | 45 | 55 | - | deg. | | | | Vert ca | θ y+ | CR > 10, θ x = ±0° | 30 | 40 | - | deg. | | | | | <i>θ</i> у– | CR > 10, θ x = ±0° | 40 | 50 | - | deg. | | | Response t me | | t on | Wh te to b ack 100% → 10% | - | 15 | 40 | ms | Note 6 | | | | t off | B ack to wh te 0% → 90% | - | 55 | 70 | ms | | **Notes 1.** Vcc = 3.3 V, IL = 5.0 mA rms, with recommended inverter Part No. 121PW111. - **2.** Viewing angle: $\theta x = \pm 0^{\circ}$, $\theta y = \pm 0^{\circ}$, At center. - 3. The contrast ratio is calculated by using the following formula. Contrast ratio (CR) = $$\frac{\text{Luminance with all pixels in "white"}}{\text{Luminance with all pixels in "black"}}$$ The luminance is measured in darkroom. **4.** The luminance is measured after 20 minutes from the module works, with all pixels in "white". Typical value is measured after luminance saturation. The luminance is measured in darkroom. 5. The luminance uniformity is calculated by using following formula. $$Luminance uniformity = \frac{Maximum luminance}{Minimum luminance}$$ The luminance is measured at near the five points shown below. 6. Definition of response time is as follows. Photodetector output signal is measured when the Luminance changes "white" to "black" or "black" to "white". 7. Definitions of viewing angle are as follows. #### **RELIABILITY TEST SPECIFICATIONS** | Test tems | Test cond t ons | Judgement | |-------------------------------------|---|------------------| | H gh temperature/hum d ty operat on | 50 ±2°C, 85% re at ve hum d ty
240 hours
D sp ay data s b ack. | Note 1 | | Heat cyc e (operat on) | </td <td>Note 1</td> | Note 1 | | Therma shock (non-operation) | <1> -20°C ±3°C 30 m nutes
60°C ±3°C 30 m nutes <2> 100 cyc es <3> Temperature trans t on t me w th n 5 m nutes | Note 1 | | V brat on (non-operat on) | <1> 5 - 100 Hz, 19.6 m/s² (2G) 1 m nute/cyc e, X, Y, Z d rect on <2> 120 t mes each d rect on | Note 1
Note 2 | | Mechan ca shock (non-
operat on) | <1> 539 m/s² (55G), 11 ms
X, Y, Z d rect on
<2> 5 t mes each d rect on | Note 1
Note 2 | | ESD (operation) | 150 pF, 150 Ω , ±10 kV 9 p aces on a pane Note 3 10 t mes each p ace at one-second nterva s | Note 1 | | Dust (operat on) | 15 k nds of dust (JIS Z 8901)
Hour y 15 seconds st r, 8 t mes repeat | Note 1 | Notes 1. Display function is checked by the same condition as LCD module out-going inspection. - 2. Physical damage. - 3. Discharge points are shown as follows. #### **GENERAL CAUTIONS** Next figures and sentence are very important, please understand these contents as follows. **CAUTION** This figure is a mark that you will get hurt and/or the module will have damages when you make a mistake to operate. This figure is a mark that you will get an electric shock when you make a mistake to operate. This figure is a mark that you will get hurt when you make a mistake to operate #### CAUTION Do not touch an inverter ...on which is stuck a caution abe ... while the LCD module is under the operation, because of dangerous high voitage. - (1) Caution when taking out the module - <1> Pick the pouch only, when taking out the module from a carrier box. - (2) Cautions for handling the module - <1> As the electrostatic discharges may break the LCD module, handle the LCD module with care against electrostatic discharges. Peel protection sheet cut from the LCD panel surface as slowly as possible. - <> \(\) As the LCD panel and backlight element are made from fragile glass material, impulse and pressure to the LCD module should be avoided. - <3> As the surface of polarizer is very soft and easily scratched, use a soft dry cloth without chemicals for cleaning. - <4> Do not pull the interface connectors in or out while the LCD module is operating. - <5> Put the module display side down on a flat horizontal plane. - <6> Handle connectors and cables with care. - <7> When the module is operating, do not lose CLK, Hsync, or Vsync signal. If any one of these signals is lost, the LCD panel would be damaged. - <8> The torque for mounting screw should never exceed 0.294 N·m (3 kgf·cm). - <9> Don't push or rub the surface of LCD module please. If you do, the scratches or the marks like rubbing marks may be left on the surface of the module. - <10> Do not give the stress to interface connectors. The module may become function by a contact defective and damages. Pay attention to handling at the time of matching connector connection and in the connection condition. - (3) Cautions for the atmosphere - <1> Dew drop atmosphere must be avoided. - Do not store and/or operate the LCD module in high temperature and/or high humidity atmosphere. Storage in an anti-static pouch and under the room temperature atmosphere is recommended. - <3> This module uses cold cathod fluorescent lamps. Therefore, the life time of lamp becomes short if the module is operated under the low temperature environment. - <4> Do not operate the LCD module in high magnetic field. #### (4) Caution for the module characteristics - On not apply any fixed patterns data for a long time to the LCD module. It may cause image sticking. Please use screen savers if the display pattern is fixed for a long time. - This module has the retardation film which may cause the variation of the color hue in the different viewing angles. The ununiformity may appear on the screen under the high temperature operation. - <3> The light vertical stripe may be observed depending on the display pattern. This is not defects or malfunctions. - <4> The noise from the inverter circuit may be observed in the luminance control mode. This is not defects or malfunctions. #### (5) Other cautions - <1> Do not disassemble and/or reassemble LCD module. - <2> Do not readjust variable resistors nor switches etc. - <3> When returning the module for repair etc., Please pack the module properly to avoid any damages. We recommend the original shipping packages. Liquid Crystal Display has the following specific characteristics. There are not defects nor malfunctions. The optical characteristics of this module may be affected by the ambient temperature. The LCD module uses cold cathode tube for backlighting. Optical characteristics, like luminance or uniformity, will be changed by the progress in time. Uneven brightness and/or small spots may be observed depending on different display patterns. Note 1: The value in parentheses are for reference. Note 2: The torque to mounting screw never exceed 0.294 N·m (3kgf·cm). #### **OUTLINE DRAWING** REAR SIDE (Unit in mm) Note 1: The value in parentheses are for reference. Note 2: The torque to mount ng screw never exceed 0.294 N·m (3kgf·cm). Data Sheet EN0510EJ1V0DS00 No part of this document may be copied in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or of others. While NEC Corporation has been making continuous effort to enhance the reliability of its Electronic Components, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC Electronic Components, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots. Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. Anti-radioactive design is not implemented in this product. This datasheet has been download from: www.datasheetcatalog.com Datasheets for electronics components.