FREE

Subscribe to the display technology news roundups. You can also post your own content in the open section.

Display Industry News Roundups
Delivered via email

Twitter
Tuesday
Jun282016

DISPLAY TECHNOLOGY NEWS ROUNDUP 6.28.16

Image via EE Times

Display Alliance is sponsored by Smarter Glass ( www.smarterglass.com ) , a leading distributor and solutions provider with nearly 15 years specializing in the global LCD display industry and PCAP touchscreens. This blog is an open resource for the display industry and welcomes content and sponsorship from readers. Contact us to discuss how we can work together on Display Alliance. For display panels, visit the Smarter Glass display database to search and compare thousands of panels side-by-side.

Hybrid display switches between OLED and reflective LCD modes " The Semiconductor Energy Laboratory (SEL) Co Ltd in Japan has developed a smartphone-sized 4.38 inches hybrid display that combines two display technologies into one: OLED for its very high contrast and colour quality indoors, and reflective LCD for its high readability in bright outdoors. " via EE Times

Xiaomi Mi 5s With Pressure-Sensitive Touch Screen Launching Soon " Xiaomi has had a respectable first half this year and released several products including its flagship Xiaomi Mi5. Of course, some latest, trending features like Force Touch display, curved screen, etc. were missing from the phone. Well, it looks like the company is going to release a sequel of the phone to fill in the blanks. " via Mobipicker

Easitech Launches Mini Projector with Finger-activated Touchscreen " The Shanghai company Easitech announced a new mini projector touchscreen that is activated by a finger or stylus. Weighing 5 ounces, the Lazertouch projector can turn a surface or wall into an interactive white board presentation. " via Government Video

The Nubia Z11 is another phone with an edge-to-edge display " Chinese smartphone maker Nubia has announced the Z11, a smartphone with an edge-to-edge display and the sequel to last year's bezel-free flagship Z9. The Z11 comes with a 5.5-inch 1008p display, which isn't that great in 2016 but largely makes up for it with a strong lineup of specs. " via The Verge

Samsung to invest $6.82 billion to boost the production of AMOLED panels " Super AMOLED technology goes way back. Samsung had launched its first Galaxy S smartphone with a Super AMOLED display back in 2010. Six years later and it’s still one of the best looking displays on a smartphone. " via Tech2 on Firstpost

Apple's dual-layer LCD technology promises high-contrast, lifelike HDR images " Apple in a patent application published on Thursday details a method of reducing image artifacts in high dynamic range (HDR) dual-layer LCDs, technology that could theoretically boost a typical display's contrast ratio to 1,000,000 to 1. " via AppleInsider

Apple may soon have an extra supplier of OLED displays for future iPhone: Sharp " With Apple expected to switch to OLED screens for future iPhones, it appears that it may not need to rely completely on the two major manufacturers for long. " via 9 to 5 Mac

80 experts compared this year’s hottest TVs side by side, and the winner was … " When the ballots were counted, LG’s Signature G6 OLED TV won in a landslide. This marks the third year in a row that LG’s OLED took the title. Competing with the 65-inch LG G6 (OLED65G6P) were the 75-inch Sony X940D (XBR75X940D), 78-inch Samsung KS9800 (UN78KS9800), and the 65-inch Vizio Reference Series (RS65-B2). " via Digital Trends

Posiflex Launches New POS Touch Screen Terminal " Posiflex announced the introduction of its new XT3915, a 15-inch resistive touch screen terminal configured by default with a 128 GB solid state drive (SSD), further improving performance and reliability for non-stop POS service. " via QSR Magazine

What did you think about today's news? Leave a comment here and share your thoughts.

Tuesday
Jun142016

DISPLAY TECHNOLOGY NEWS ROUNDUP 6.14.16

Image via Fudzilla

Display Alliance is sponsored by Smarter Glass ( www.smarterglass.com ) , a leading distributor and solutions provider with nearly 15 years specializing in the global LCD display industry and PCAP touchscreens. This blog is an open resource for the display industry and welcomes content and sponsorship from readers. Contact us to discuss how we can work together on Display Alliance. For display panels, visit the Smarter Glass display database to search and compare thousands of panels side-by-side.

Samsung makes 95 per cent of OLED market " While the rest of the world is talking about OLED displays, it seems that 95 per cent of the displays made by Samsung. Samsung appears to have corned the market and made more than 95 per cent of the total shipments in the first quarter (Q1) of 2016." via Fudzilla

Display Enhancements for You " SmarterGlass provides a variety of enhancements that we can apply to your display, applicable to a broad range of FPD technologies including Liquid Crystal (LCD), Plasma, Vacuum Fluorescents (VFD), and organic light-emitting diode (OLED). Our goal is to improve the looks and durability of your LCD or FPD in all the environments in which it will operate. " via SmarterGlass

Trimmable Backlighting Kit accelerates display prototyping. " Along with 0.45 or 0.3 mm thin, 6 x 11 in., Clad Flat Fiber™ (CFF) flexible optical sheets, Cut-2-Size™ Backlighting Kits include PCB with 8 white, side-fire LEDs that can be powered by 9 Vdc supply. Polycarbonate panels can be cut into any shape or size using such standard cutting tools as scissors or knife. " via ThomasNet

Samsung Galaxy S8 Edge to Feature a 5.5-inch 4K UHD Screen for VR Support " As far as Samsung Galaxy S8 Edge is concerned, be prepared to come across a similar size of screen size as the current S7 Edge. However, unlike the 2K QHD resolution found on this year’s curved screen flagship, next year’s version will pack a 4K UHD display. " via Nashville Chatter

Sony demos 8Kx2K giant LED display " Built from Sony's trade-marked CLEDIS™ (Crystal LED Integrated Structure) micro-LED panels measuring 403×453mm each and packing 320×360 RGB LED pixels at a pitch of 1.25mm, the new LED wall display technology could become commercially available early 2017. " via EE Times

iBuyPower just put an LCD display in a gaming PC's side panel " For those who like LCD panels, iBuyPower has put one in a PC’s side panel. The company did this with its new design, known as the Snowblind. The case for this new system combines a traditional clear window display — so you can see all of your no-doubt pricey components — with an LCD readout, letting you put any information you want right where everyone can see it. " via Digital Trends

Hands on with Cadillac’s wide-angle, LCD rear-view mirror " Flip the day-night lever at the bottom of your Cadillac XT5’s rear-view mirror and it becomes…an LCD showing a wide-angle view of traffic behind you, shot from the viewpoint of a camera just above the new crossover’s rear license plate. " via Extremetech

InFocus Adds Impact to Interactive Touchscreen Solutions With Projected Capacitive Touch Technology and 4K Resolution " adding premium capabilities, including projected capacitive touch and 4K resolution, to a variety of its interactive touchscreen and video conferencing solutions, the company announced today. InFocus created the original all-in-one video conferencing touchscreen solutions and the company is once again defining the category " via Twice

Global Trade Electronic (USA) INC. Now Offers an LCD Screen Recycle Program " Global Trade Electronic (USA) INC. (GTE), a prominent developer of smartphone LCD screens and accessory products, announces its new LCD screen recycle program. Through the program, GTE will send a free shipping label to customers wishing to recycle their broken LCD screen. Once the company receives the screen, its professional teams will test the functionality and authenticity of the LCD and, based on those results, will determine a price to offer for the broken screen. " via PR Web

What did you think about today's news? Leave a comment here and share your thoughts.

Friday
Jun032016

Display Technology News Roundup 6.3.2016

Image via Sci-Tech Today

Display Alliance is sponsored by Smarter Glass ( www.smarterglass.com ) , a leading distributor and solutions provider with nearly 15 years specializing in the global LCD display industry and PCAP touchscreens. This blog is an open resource for the display industry and welcomes content and sponsorship from readers. Contact us to discuss how we can work together on Display Alliance. For display panels, visit the Smarter Glass display database to search and compare thousands of panels side-by-side.

E Ink Unveils New Full Color Display " A new display from E Ink can produce full color at every pixel, without having to rely on a color filter array (CFA), the company said today. The electrophoretic display, known as Advanced Color ePaper (ACeP), will be primarily used for digital signage at first. " via Sci-Tech Today

How To Play China’s Shift From LCD To OLED? " Apple (AAPL) is long rumored to have hired Samsung Electronics (005930.Korea/SSNLF) to supply OLED screens for its iPhones next year. But the OLED technology is picking up in the TV space as well. " via Barron's

New controller technology enhances management precision and simplicity at Illinois Sow Farm " As a full-time pork producer who is also responsible for taking care of her own family, Clare Schilling welcomes new technologies that can help simplify and streamline the management of her hog operations. Despite recent advancements in many facets of pork production, most swine facilities today still rely on older, less efficient technology when it comes to environmental controllers. " via National Hog Farmer

ASUS Readies ROG Laptops with Optional 120 Hz AHVA Display Panels " In the recent years, ASUS became one of the world’s largest supplier of gaming notebooks and gaming displays. Having obtained a lot of expertise in building monitors and laptops for gamers, the manufacturer decided to apply it knowledges to build laptops with display panels featuring 120 Hz refresh rates. " via The New Yorker

LG Supplying Xiaomi with Curved Display Panels " Samsung may be the one selling curved display smartphones right now. But they aren’t the only manufacturer making curved displays. LG has been working on them for a few years as well. In fact, they have used a curved display in smartphones like the LG G Flex, although not as curved as what we have on the Samsung Galaxy S7 Edge, it is still a curved display but, it’s better known as a flexible display. " via Android Headlines

UGA professor, students experiment with giant touch-screen technology " University of Georgia students are conducting a kind of experiment in a classroom of UGA’s Davison Life Sciences Building this month, but not the kind you’d usually think of in connection with the university’s genetics department. " via The New Yorker

Panasonic pulls plug on LCD TV panels in Japan " Panasonic pulls plug on LCD TV panels in Japan " via Japan Times

InFocus Adds Impact to Interactive Touchscreen Solutions With Projected Capacitive Touch Technology and 4K Resolution " adding premium capabilities, including projected capacitive touch and 4K resolution, to a variety of its interactive touchscreen and video conferencing solutions, the company announced today. InFocus created the original all-in-one video conferencing touchscreen solutions and the company is once again defining the category " via Twice

What Display Technology Advances Are Needed to Keep Up With the Growing VR Market? " Virtual Reality (VR) is a digital immersion technology. Instead of “watching a movie,” you are “participating in the movie,” and user movements and actions are reflected into the movie storyline. " via ECN

What did you think about today's news? Leave a comment here and share your thoughts.

Wednesday
May042016

Display Technology News Roundup 5.4.2016

Image via The New Yorker

Display Alliance is sponsored by Smarter Glass ( www.smarterglass.com ) , a leading distributor and solutions provider with nearly 15 years specializing in the global LCD display industry and PCAP touchscreens. This blog is an open resource for the display industry and welcomes content and sponsorship from readers. Contact us to discuss how we can work together on Display Alliance. For display panels, visit the Smarter Glass display database to search and compare thousands of panels side-by-side.

The Search for Our Missing Colors "Each year, a group of experts at Pantone, the company best known for its exacting color-matching system, chooses and promotes a Color of the Year that aims to set the world’s fashion agenda—“a color snapshot of what we see taking place in our culture that serves as an expression of a mood and an attitude,” their Web site proclaims. " via The New Yorker

Huawei and Xiaomi to launch curved smartphones using Samsung, LG display panels "While flat devices may have been a hit in the past, curved displays appear to be a thing of the future. This is evident, especially given that giant OEMs like Samsung and LG have been incorporating it for a while now, not to mention our modern-day televisions." via UPDATO

LG Display to mass-produce OLED light panels "LG Display, the world's largest maker of liquid crystal display panels, is taking another step to establish the market for organic light-emitting diodes with its plan to mass-produce OLED panels for lighting starting in the first half of 2017." via Nikkei

New Tech Turns Your Skin Into a Touchscreen for Your Smartwatch "One of the biggest challenges with smartwatches is trying to navigate through apps on a relatively tiny screen. While smartphones and tablets have gotten bigger over the years, the gadgets we wear on our wrists need to stay small to avoid looking terribly unfashionable. Today a team at the Future Interfaces Group, a research lab within Carnegie Mellon University, released a look at a novel solution to this problem: making the skin on your arm and hand act like a touchscreen for your smartwatch." via The Verge

Put my finger where? New LG tech hides fingerprint sensors away "The days of having a fingerprint sensor you can actually see on a smartphone may be coming to an end. LG Innotek, the division of the company that produces components and materials, has integrated a fingerprint sensor into a glass front panel, but from underneath the sheet rather than in front or on top." via Yahoo

Curved ultrawide displays: Coming to a desktop near you? "Curved screens and immersive imaging are not new ideas, having been pioneered in movie theatres, along with surround sound, in the 1950s. The original Cinerama process used three synchronized 35mm projectors and a deeply curved screen. In the theatre environment, screens and viewing distances, are much larger than for desktop monitors. In addition, the image on the screen is projected from a lens or lenses, rather than generated on the screen itself. Projected onto a flat screen, wide-screen images can suffer from pincushion distortion, where the centres of the top, bottom and sides bow inwards" via ZD Net

Cadmium-Free Quantum Dots Offer Vibrant Color for Liquid Crystal Displays "Display manufacturers are constantly striving to satisfy consumers’ never-ending appetites for better and more true-to-life electronic displays. Accomplishing that has as much to do with color as it does with resolution. To do so, one technology that has been gaining increased momentum in the industry is quantum dots." via Photonics Media

iPhone 8 Will Feature 10nm A11 Chip, Ultrasonic Touch ID, OLED Screen, and More "Apple hasn’t earned as much profits with iPhone 6S as it did with the iPhone 6, which is why the company really needs to raise the bars for innovation in its next flagship smartphone. Analysts have predicted that the iPhone 7 will bring Apple back in the market with profits and will be an important factor to increase the hype around the next flagship, the iPhone 8." via MobiPicker

There's no need for 3D glasses with the HoloFlex holographic smartphone "Researchers from Queen’s University’s Human Media Lab have built a smartphone called the HoloFlex, which, as the name suggests, is made with both a flexible body and a holographic display. The result? Images that, quite literally, pop out at you." via Digital Trends

What did you think about today's news? Leave a comment here and share your thoughts.

Tuesday
Apr052016

Display Technology News Roundup 4.5.2016

Image via WFTV

Display Alliance is sponsored by Smarter Glass ( www.smarterglass.com ) , a leading distributor and solutions provider with nearly 15 years specializing in the global LCD display industry and PCAP touchscreens. This blog is an open resource for the display industry and welcomes content and sponsorship from readers. Contact us to discuss how we can work together on Display Alliance. For display panels, visit the Smarter Glass display database to search and compare thousands of panels side-by-side.

UCF researches work on extreme-temperature resistant LCD screens "University of Central Florida researchers said they’ve found a way to solve the problem of an electronic device malfunctioning due to extreme temperatures. The new technology can be used in every future touchscreen device to keep cellphones or GPS’ screens working in the most extreme temperatures." via WFTV

CES 2016 TV tech: 4K yawns, high dynamic range dawns "The presentation will discuss how all capacitive touch screens (CapTouch) work well in demos and on the bench but when they are installed in real world applications, problems can start occurring. This presentation will provide delegates with the information and solutions needed to ease CapTouch implementation. " via Cambridge Network

Quantum Composers Adds New Touchscreen Technology to Laser Lines "Quantum Composers, a leading manufacturer of lasers and systems, launched a new touchscreen controller for simplified control of laser systems. The all new Smart Controller is an easy to use extension for manual repair systems that may include a microscope setup and has the functionality to control the systems energy, firing mode, rate, and slit size and shape." via SATPR News

Mobile AMOLED displays just got cheaper than LCD "Flagship phones have been adopting AMOLED panels in favor of LCD for a while now. Top phone manufacturers are opting for the improved battery hours and flexibility in features such as Samsung’s Always-On Display, which shows battery life and date around the clock without too much of an impact on battery life. The display technology is used in most modern phones, laptops, smartwatches, and televisions." via Digital Trends

Touchscreen Controller enhances usability of laser systems "Quantum Composers, a leading manufacturer of lasers and systems, launched a new touchscreen controller for simplified control of laser systems. The all new Smart Controller is an easy to use extension for manual repair systems that may include a microscope setup and has the functionality to control the systems energy, firing mode, rate, and slit size and shape." via ThomasNet

Finally, a big screen for travellers: Thales reveals 21inch seatback TV designed to fit on the back on an economy seat "A new type of airline seating is set to make economy flights a lot more enjoyable. A French company called Thales has developed massive LCD touchscreen displays called 'Digital Sky' built into the backs of economy seats." via DailyMail UK

Sharp, Under Foxconn, Aims to Excel in Smartphone Displays "Success for Sharp Corp., newly under the control of Taiwan’s Foxconn Technology Group, may boil down in large part to whether it can stay ahead in the fast-changing technology for smartphone displays." via Wall Street Journal

50 Engineers in Taiwan are secretly developing New Display Tech for Apple "The OLED screens (which are already being used by Samsung in a number of its smartphones) would allow Apple to create thinner, lighter, brighter and more energy-efficient smartphones and tablets as the technology doesn’t need a separate backlight to power the display." via Albany Daily Star

Quantum Dot (QD) Display Market Worth $3.96 Billion By 2022: Grand View Research, Inc. "Increasing awareness regarding energy-efficient displays is expected to boost global quantum dot display market growth. Surge in demand for advanced QLED powered TVs has propelled industry growth." via PR Newswire

What did you think about today's news? Leave a comment here and share your thoughts.

Tuesday
Feb232016

Display Technology News Roundup 2.23.16

Image via The Verge

Display Alliance is sponsored by Smarter Glass (www.smarterglass.com), a leading distributor and solutions provider with nearly 15 years specializing in the global LCD display industry and PCAP touchscreens. This blog is an open resource for the display industry and welcomes content and sponsorship from readers. Contact us to discuss how we can work together on Display Alliance. For display panels, visit the Smarter Glass display database to search and compare thousands of panels side-by-side.

Panasonic's transparent display is hard for your eyes to believe "Transparent displays aren't really new in the technology industry, but this year at CES we're seeing some pretty amazing examples of them. There's LG's 18-inch display, which you can roll up like paper. And I just stopped by Panasonic's booth to check out the company's own transparent display. Unlike LG's, this one's not small enough to hold in your hand; it's meant for the living room. Panasonic's demo showcases the display attached to shelving with various home decor behind it." via The Verge

Foxconn's lookin' Sharp: $6 billion takeover accepted "Manufacturing giant Foxconn looks set to get a big boost to its display-making capabilities, with reports that the board of directors at Japanese electronics firm Sharp have accepted a takeover deal from the Taiwanese company." via Tech Radar

Innolux fully restores production at 8 factories in STSP "Innolux on February 22 announced the complete restoration of production at eight factories at the Southern Taiwan Science Park (STSP) which were hit by a large earthquake on February 6. A 5G and 6G factory were damaged the most and production was restored late February 21, Innolux said. Production capacities at the other six factories were only lightly reduced by around 5-10% due to the earthquake" via Digitimes

The Next Phase of the TV Tech Battle: Quantum Dot vs. OLED Display "On the battlefield is organic LED (OLED) technology, championed by LG Electronics, facing off against something called quantum dot, a nano-crystal evolution of LCD technology which Samsung favors. This may sound like jargon and splitting hairs, but the production methods and potential costs for each type of display are very different." via XConomy.com

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Samsung Display offers standard AMOLED solutions to tout China smartphone vendors "Samsung Display, in an attempt to tout China-based smartphone vendors, has offered standard AMOLED touch panel solutions for common use to keep prices down, according to Taiwan-based supply chain makers." via Digitimes

Samsung Display offers standard AMOLED solutions to tout China smartphone vendors "Samsung Display, in an attempt to tout China-based smartphone vendors, has offered standard AMOLED touch panel solutions for common use to keep prices down, according to Taiwan-based supply chain makers." via Digitimes

CES 2016 TV tech: 4K yawns, high dynamic range dawns "Since 4K TVs are now basically mainstream, with dirt-cheap prices and correspondingly thin profit margins, the voracious capitalist beast of technological progress needs its next shiny new object. Something higher, in both price and ambition. And that's why TV manufacturers, the ones who spend millions to power shows like CES, look at HDR as something that might convince you to spend more money on a bigger and better flat-panel." via CNet

Evertz Provides 4K Replay System at Super Bowl 50 "Transparent displays aren't really new in the technology industry, but this year at CES we're seeing some pretty amazing examples of them. There's LG's 18-inch display, which you can roll up like paper. And I just stopped by Panasonic's booth to check out the company's own transparent display. Unlike LG's, this one's not small enough to hold in your hand; it's meant for the living room. Panasonic's demo showcases the display attached to shelving with various home decor behind it." via TV Technology

LG made an 18-inch display you can roll up like a Newspaper "LG Display has a prototype 18-inch screen it's showing off at the Consumer Electronics Show this week that rolls up like a piece of paper. The technology builds on LG's forward-looking OLED work focusing on bendable, rollable, and curving displays. The company showed similar technology last year as a proof of concept, but kept images behind closed doors." via The Verge

What did you think about today's news? Leave a comment here and share your thoughts.

Thursday
Dec172015

Display Technology News Roundup 12.17.2015

Image via Cineplex Digital Solutions

Display Alliance is sponsored by Smarter Glass (www.smarterglass.com), a leading distributor and solutions provider with nearly 15 years specializing in the global LCD display industry and PCAP touchscreens. This blog is an open resource for the display industry and welcomes content and sponsorship from readers. Contact us to discuss how we can work together on Display Alliance. For display panels, visit the Smarter Glass display database to search and compare thousands of panels side-by-side.

How art and interactivity are painting a new digital signage experience ""People are accustomed to being presented with information and data and often have expectations about how it is delivered," said Matt Arnold, lead engineer for Second Story, part of SapientNitro. "Displays which employ an unusual or even artistic approach to displaying information can have an emotional effect on viewers, resulting in a more impactful and lasting experience." In some creative use-cases, Arnold said, information can be delivered to viewers in an ambient way that "envelops" them without their explicit awareness. "If you want to engage an audience through displays, you first must recognize that the display canvass is only a small part of a wider context of information that they are witnessing. When they are idle, the displays which blend into the environment and provide an ambient layer of story and information have more impact than those that are 'always on,'" he said. "When content reacts to the presence of viewers or adjusts with the context of their surroundings, it becomes more relevant to viewers. Displays that show the same messaging regardless of their environment can become background 'noise' and ignored by your audience." The human brain, which makes up only 3 percent of body weight but eats up to 20 percent of body energy, is hardwired to conserve energy wherever possible, said Ed King, vice president of strategy at MaxMedia, and that means it usually takes the path of least resistance. "When confronted with words, numbers or icons/graphics, the brain always looks for the 'quick answer.' By creatively visualizing data, wayfinding and other digital signage, retailers stand a better chance of communicating their message more efficiently and effectively to customers," he said." via Digital Signage Today

2017 Mercedes-Benz E-Class Has All The Display Screens "Mercedes-Benz gave everyone a look inside its new 2017 E-Class by virtue of a video (watch Video) released last week, and it’s covered in digital displays. As for the exterior, the manufacturer hasn’t shown us what it looks like just yet—but might have accidentally given a hint. ...As far as what’s officially inside of the new car, the E-Class features more video displays and less actual buttons. It’ll even mark the first time that a car has touch-sensitive control buttons on the steering wheel, which respond to finger swipes—similar to the functions on a smartphone—to control the car’s infotainment system. If the driver doesn’t want to swipe, he or she can switch the car over to respond to voice commands. Even for a person who likes options, this car has a ton of options." via Jalopnik

Will Apple Cause the Death of LCD Displays? "If Apple does leap, the broader choice of suppliers will be one factor influencing its choice. While Samsung, its arch-rival in smartphones, controlled the OLED field, it had a real incentive to stay away from that technology, rather than increase the amount of business it gives to the Korean firm (which already manufactures many of its processors and is a major memory vendor). So Apple used its power to support other companies in pushing LCD technology to its limits in terms of screen resolution, color intensity, performance and so on. If it moves to OLED – as it has already for the Apple Watch – it will hit a whole supply chain. One of the Japanese firms which saw its value fall on the reports was Minebea, which makes backlights for LCDs, while another was Nitto Denko, a supplier of film. In general, LCD displays use more components than OLEDs, because they need color filters and backlights, so the industry shift away from them, as the OLED market gets more competitive and affordable, will be a negative for many of these specialized technologies." via Rethink Research

Toshiba Will End TV Production "Toshiba’s retreat from TV manufacturing highlights the company’s growing focus on nuclear power infrastructure and other business-to-business operations and a shift away from its consumer businesses. It also marks the increasing relapse of Japanese manufacturers in the global home electronics market, losing ground to overseas competition. Toshiba in 1959 became the first company in Japan to produce a color television. The TV business has since been a centerpiece of its operations, best known in recent years for the Regza series of liquid crystal displays introduced in 2006. But the division has been bleeding money since 2011 in the face of intensifying competition from South Korean and Chinese manufacturers." via The Japan Times

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Which Is the Better Display? Quantum Dot vs OLED "QDs are currently reliant on a backlight, the deep black accuracy and contrast ratio will still suffer from similar drawbacks as existing LCD displays. Therefore, OLED should still win out when it comes to contrast and high dynamic range imagery, as it can switch off pixels for a pure black dot, but QD displays will still see a boost in brightness over traditional LCD. This leads us onto viewing angles, an area that OLED again boasts superiority over LCD displays and this is unlikely to change much with the introduction of Quantum Dot displays. Because backlight based displays require a filter layer rather than producing light directly on the surface, some light is blocked when you don’t look at the display from head on. While perhaps not likely to be a major problem on your small mobile phone, Quantum Dot displays won’t match OLED’s viewing angles until designs come along that eliminate the need for a backlight." via Android Authority

New Material Could Make Touchscreens More Affordable "ITO is a transparent conductor used in more than 90 percent of the display market and has been the dominant material for the past 60 years, said researchers from Pennsylvania State University. In the last decade, the price of indium has increased dramatically, and displays and touchscreen modules have become a main cost driver in smartphones and tablets, making up close to 40 percent of the cost. In other words, while memory chips and processors get cheaper, displays get more expensive from generation to generation. The Penn State team has reported a design strategy using 10-nm-thick films of an unusual class of materials called correlated metals. In most conventional metals, such as copper, gold, aluminum or silver, electrons flow like a gas. In correlated metals, such as strontium vanadate and calcium vanadate, they move more like a liquid. The electron flow produces high optical transparency along with high metal-like conductivity, the researchers said. " via Photonics.com

New 360-Degree 3D Hologram Imaging Technology "Korean scientists developed a hologram display technology that can realize holograms in 360-degree three-dimensional (3D) color image, which often appears in science fiction films such as Star Wars and Minority Report. It will be used as a core technology that allows users to watch hologram images in smartphones or ushers an age of hologram TV. The Electronics and Telecommunications Research Institute (ETRI) announced on Dec. 2 that it developed a “tabletop holographic display” technology that reproduces 360-degree 3D hologram at a size of 3 inches. A Hologram produces 3D photographs by using interference and diffraction properties of light waves. At present, commercialization is not possible due to technical limits. Only MIT in the U.S. and Japan's National Institute of Information and Communications Technology (NICT) have demonstrated hologram technologies that enable users to view images from within an angle of 20 degrees. The ETRI said that real hologram technology uses diffraction of light waves, unlike fake hologram that is used in hologram shows." via BusinessKorea

India's First 'Display Variant' Debit Card "Axis Bank today said it has launched a 'display variant' debit card which does away with the hassles of generating one time password (OTP) over SMS while transacting. The card, which is being made available for high-value NRE customers, has an embedded EMV chip, a display screen and a touch-sensitive button which helps generating the OTP on the card itself. "This OTP, in conjunction with the user ID and password, allows the customer to transact on internet banking without having to wait for OTP delivery via SMS or email," a bank statement said, adding that it is the first lender in the country to offer the facility." via Business Standard

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

How Can Industrial Digital Signage Lead to Increased Productivity? "But what about signage in the industrial space? How can these communication devices enhance the quality of operations at plants, warehouses and other similar sites? What advice should you be giving industrial customers on how to make best use of digital signage? Typically, hundreds or thousands of employees work at industrial plants, so communicating to everyone across the board is a tall order. Netpresenter, a Netherlands-based signage provider with locations in the United Kingdom, Germany and the United States, says its multichannel solutions improve safety, enhance internal communications, and foster employee engagement. Here are several ways that can happen: 1) Put key performance indicators (KPIs) front-and-center near production lines - Industrial plants can go a long way toward helping workers keep tabs on actual, and target production numbers by posting them in real time on digital displays. Signs can also feature output data, as well as comparisons against a set target or previous period to keep workers motivated to do their jobs." via Channelnomics

HP Inc. Is Bringing Its Giant Virtual Reality Display Into Healthcare "HP’s VR machine, called Zvr, isn’t your typical VR hardware like the Oculus Rift headset. Rather, it’s a 23.6-inch display connected to four cameras that track its user’s head movements. A set of glasses turns images into 3D, and a stylus allows the user to move 3D objects around and poke at them. Now HP hopes to bring the Zvr into the medical world in collaboration with medical software upstart EchoPixel. The Mountain View, Calif.-based startup makes 3D medical visualization software that turns diagnostic scans into 3D models. Those 3D projections of, say, an organ, can then be studied in VR. The hardware-software partnership is intended to be used to diagnose ailments or assist in planning operations. Typically, EchoPixel CEO Ron Schilling explained, a doctor sits in front of a computer looking at multiple medical imaging scans and tries to make sense of them in 2D. EchoPixel’s pitch is that turning these scans into 3D models will help doctors identify overlooked issues. For example, 3D scans could make it easier to identify a polyp, abnormal tissue growth, in an organ." via Forbes

Apple reportedly opens ‘secret’ display laboratory in Taiwan "Apple has opened a “secret laboratory” in Taiwan to develop new display technologies, according to a new report, citing sources who are familiar with the company’s plans. The facility employs “at least” 50 engineers who are working to build better displays for iPhone and iPad. “Apple has recruited from local display maker AU Optronics Corp. and Qualcomm Inc., which used to own the building, the people said,” reports Bloomberg. “Apple began operating the lab this year as it aims to make products thinner, lighter, brighter and more energy-efficient.” Apple is thought to be working on more advanced LCD displays, as well as OLED displays that are thinner and do not require a backlight. Recent rumors have claimed the company is interested in bringing OLED displays to iPhone in the coming years." via TechnoBuffalo

Converting Stereoscopic 3-D Video Content For Use In Glasses-Less 3-D Displays ""Glasses-less" 3-D displays now commercially available dispense with the need for cumbersome glasses, but existing 3-D stereoscopic content will not work in these new devices, which project several views of a scene simultaneously. To solve this problem, Disney Research and ETH Zurich have developed a system that can transform stereoscopic content into multiview content in real-time. ..."The full potential of this new 3-D technology won't be achieved simply by eliminating the need for glasses," said Markus Gross, vice president of research at Disney Research. "We also need content, which is largely nonexistent in this new format and often impractical to transmit, even when it does exist. It's critical that the systems necessary for generating that content be so efficient and so mobile that they can be used in any device, anywhere." Multiview autostereoscopic displays, or MADs, enable a 3-D experience by simultaneously projecting several views of a scene, rather than just the two views of conventional, stereoscopic 3-D content. Researchers therefore have begun to develop a number of multiview synthesis (MVS) methods to bridge this gap. One approach has been depth image-based rendering, or DIBR, which uses the original views to build a depth map that describes the distance of each pixel to the scene. But building depth maps is difficult and less-than-perfect depth maps can result in poor quality images." via ECN Magazine

Are you an engineer or have display expertise? Contact us to be featured in the interviews section.

Force-sensing Touchscreens to Address Industrial Applications "With recent Apple product announcements raising consumer awareness and interest in force-sensing touchscreens, a supplier of projected capacitive touchscreens figures the time is ripe to bring similar capabilities to the factory floor and other environmentally challenging environments. ...Developed specifically for industrial and similarly challenging applications, TouchNetix' pressScreen is designed to enable mouse-type functionality with the use of a single finger on the touchscreen. It uses capacitive measurement technology and a new sensor structure and geometry to detect very small front lens displacements. TouchNetix expects this interface to allow entirely new use cases to be developed. Possible applications the company envisions include: In systems requiring high integrity, confirming that a touch is intentional; emulating mouse clicks by pressing the surface. (As use case examples, TouchNetix offers a video demonstration of a prototype “press-to-zoom” application, and another, demonstrating a paint application in which finger pressure modulates line width.)" via IHS Electronics360

Does How You Record Ideas Impact Creativity? "A tech VC recently asked me, "Do you even use your iPad anymore? I think they are over." To which, I replied—perhaps a bit too loudly—"Yes!" There is nothing over when it comes to the potential of touch. Apple’s investment in the iPad Pro and Pencil only reinforces this. Designers need tools that disinhibit the brain to allow room for creativity to happen. In this sense, the touch screen is one of the device revolution’s most important gifts to creatives. Touch can make the sought-after "ah ha" come easier. While still a new frontier, neuroscientists such as Rex Jung, assistant professor of neurosurgery at the University of New Mexico, have looked closely into brain structure and function to better understand creativity—as opposed to intelligence. If you think of the brain as a series of pathways—where intelligence is like the speed and accuracy with which one makes connections along the paths—creativity occurs when the brain makes unexpected or new intersections." via Fast Company

Do Computers Need Pressure-Sensing Screens? "So we’re only just beginning to see what pressure-sensitive screens will mean for how people use phones. And a lot of that is because developers are still figuring out what to do with the technology. “Anyone who’s a repeat early adopter of new iPhones shouldn’t be surprised that support for the 6S’s flagship feature [3D Touch] remains scattered close to three months in,” wrote Jacob Kastrenakes for The Verge. “It was the exact same way at this point when apps had to update for the iPhone 6’s larger screen—it took Starbucks an entire year—and apps lagged behind on adding Touch ID support, too. 3D Touch is going to be even harder.” ...For Magic Piano, figuring out what to do with 3D Touch was obvious. “For the original version of Magic Piano on the original iPhone, as soon as you touch your finger on the screen, it registers the touch and it plays the note,” said Yar Woo, the vice president of engineering at Smule, the company that makes Magic Piano. “But for 3D Touch it’s a little different. It’s more of a curve, not a single point of impact.” 3D Touch relies on 96 sensors beneath the phone’s screen. Magic Piano developers ended up introducing a small latency—just enough of a pause after the moment someone touched the screen, to be able to tell whether they’d end up pressing harder. “Just that tiny fraction of a second to know that the user is pressing hard versus pressing soft,” Woo told me. “We delay it 30 milliseconds. You can’t really notice it when you’re actually playing.”" via The Atlantic

Sharp set to spin off LCD unit in deal with Japan Display "Sharp Corp. is closer to spinning off its struggling liquid crystal display business and integrating the unit into rival Japan Display Inc. in a state-backed deal, sources said Tuesday. ...Both Sharp and Japan Display, suppliers for Apple Inc.’s iPhones, have faced intense price competition from Asian rivals." via Japan Times

What did you think about today's news? Leave a comment here and share your thoughts.

Tuesday
Dec012015

Display Technology News Roundup 12.1.2015

Image via Oak Labs / Polo Ralph Lauren / Thomas Iannaccone

Display Alliance is sponsored by Smarter Glass (www.smarterglass.com), a leading distributor and solutions provider with nearly 15 years specializing in the global LCD display industry and PCAP touchscreens. This blog is an open resource for the display industry and welcomes content and sponsorship from readers. Contact us to discuss how we can work together on Display Alliance. For display panels, visit the Smarter Glass display database to search and compare thousands of panels side-by-side.

How are touchscreen mirrors and RFID detection updating Polo Ralph Lauren's fitting room? "Now, thanks to Oak Labs, fitting room mirrors are wising up enough to help you shop. You can find other sizes and colors of that suit that’s almost right, or by keeping the hovering salespeople at bay, summoning them, or sending them for items with a tap of its touchscreen. ...The room knows which items you brought with you to try on and the touchscreen mirror displays them. On the mirror you can run through item details, and if you try a piece on and see it’s not quite right, you can pick out a different size or color with a simple tap. When you’ve found what you want, you can check out with another tap. It’s like Oak Labs combined the privacy and ease of shopping online at home with the classic and classy retail experience, including the chance to try things on. (Video)" via Digital Trends

What Is Virtual Reality? Everything You Need to Know About VR "However, the definition of VR is a sticky one. While many digital products bill themselves as VR, technically, they aren’t. “VR is a totally occluded experience,” says Fouché. In other words, he says, it’s “completely closed off from your natural world.” So, it should be a different reality that you can see, hear, and interact with. But most VR experiences being shown through these smartphone setups aren’t at all interactive. Instead, they are actually just immersive video. For instance, the New York Times recently released an immersive documentary called The Displaced, which let viewers explore the environments of three children living in war-torn worlds. True VR would have let the user interact with the environment or the films’ subjects. Likewise, last month’s Democratic debate was broadcast in VR. The real world event took place in Las Vegas, but Samsung VR owners could watch the immersive feed — though not interact with the participants (thank goodness) — from their living rooms. “The graphics were so poor they looked more like faceless avatars than human beings,” wrote TIME’s Alex Fitzpatrick. In fairness to the programmers behind this effort, come election season, most politicians look like faceless avatars." via Time

Volvo and Microsoft demonstrate HoloLens tech for showrooms "According to Volvo, the HoloLens system may also free some dealership staff from the showroom floor, with the technology allowing them to setup pop-up stores and interactive displays in shopping centres or main streets. Volvo has also postulated that, one day, the augmented reality technology may also find its way onto the production line, providing workers there with always visible builds sheets. (Video)" via CarAdvice

New medical display technology uses Virtual Reality inside MRI "Toshiba Corporation and Toshiba Medical Systems Corporation have developed a technology for displaying expansive virtual reality images inside the bore of MRI systems. High reality images are projected onto a dome-shaped screen (dome screen) in the bore to take the patient's attention away from the actual examination space. ...A semi-transparent dome screen that is moved in synchronization with the patient table is installed inside the bore, and images are projected onto the dome screen and bore cover from a projector, which is installed behind the MRI system, and whose location is unaffected by the magnetic field. The images are reflected by a mirror installed on the patient table and can then be viewed by the patient, providing a visual space that helps take the patient's attention away from the actual examination space." via MedicalXpress

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

What is PCOLED? Will It Replace OLED? "RGB OLED may form the basis of a number of high end TV and smartphone displays, including new flexible designs, but the technology could one day be replaced by an improved Plasmon-Coupled Organic Light Emitting Diode (PCOLED) architecture. Taiwan-based ITRI has announced development of its PCOLED design, which could boost the lifetime of displays by up to 27 times. PCOLED replaces the traditional red, green and blue phosphorescent color layers used to produce white light with a red, green and green plasmon-coupling phosphorescent design, complete with a double metal structure." via Android Authority

Chicago Projection Mapping Display at New UChicago Research Center "The display was positioned inside of a conference room, and featured objects that looked three-dimensional and showed off the event's theme and branding. An associate could approach the wall and press on an area that would start the next segment of the feature. ...Using 3D displays to impress guests, administrators, and donors is becoming more common along with the demand for displays that reflect a national emphasis on STEM: science, technology, engineering, and mathematics programs. (Video)" via AVNetwork

Head-Up Display Adopted by Jaguar Land Rover "The technology – which was conceptualised in the University's Department of Engineering more than a decade ago – is now available on all Jaguar Land Rover vehicles. According to the researchers behind the technology, it is another step towards cars which provide a fully immersive experience, or could even improve safety by monitoring driver behaviour. ...The HUD technology developed at Cambridge is the first to use laser holographic techniques, which provide better colour, brightness and contrast than other systems, but in a smaller, lighter package. It provides key information to the driver without them having to take their eyes away from the road. But according to Chu, the technology's potential has yet to be fully realised, and its real advantage is what it could be used for in future models. "What we really want to see is a fully 3D display which can provide much more information to the driver in a non-intrusive way – this is still a first generation piece of technology," he said." via Phys.org

Could new touchscreen material end daily smartphone charging? "Developed by Bodie Technologies, a University of Oxford spin-off company, the new display is reportedly made from a type of phase-change material called germanium-antimony-tellurium, or GST. The researchers are being understandably cagey about exactly how it’s made as they shop the technology around, but it’s based on a paper they published last year describing how a rigid or flexible display can be formed from microscopic 'stacks' of GST and electrode layers. ...They say their ultra-thin display material can produce vivid colour displays at very high resolution - even when hit with bright, direct sunlight - because of the way it manipulates incoming light. "This makes them potentially useful for 'smart' glasses, foldable screens, windshield displays, and even synthetic retinas that mimic the abilities of photoreceptor cells in the human eye," says the team. With very little electricity required to illuminate a display made from this special 'GST sandwich' configuration, the team says they could dramatically cut the overall amount of power consumed by a smartphone." via Science Alert

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Do Your Diagnostic LCD Monitors Meet the Guidelines? "The guidelines that were originally introduced by the AAPM Task Group 18 (also known as TG-18) in 2005 were widely accepted and adopted at radiology departments across the country. The updated Technical Standard was produced in 2012. There are several changes in this update that apply to more than just displays, and every practice should thoroughly study all of the details in the document. As it applies to displays, though, some of the most notable changes include: 1. LCD panel technology: An LCD technology with wide viewing angles is recommended. TN (twisted nematic)-type LCD panels should not be used. 2. Connectivity: Digital connectivity, such as DisplayPort, HDMI, or DVI-D is recommended instead of VGA. 3. Brightness: In the new standard, monitors used for diagnosis must meet a minimum brightness of 350 cd/m2 (candelas per meter squared), while monitors used for interpreting mammograms must be at least 420 cd/m2. For other types of displays (typically referred to as clinical or review displays), the minimum calibrated brightness starts at 250 cd/m2. When the updated guidelines were introduced in 2012, there were no requirements for when they needed to be implemented. As a result, the new guidelines didn't have any teeth. Today, three years after they were introduced, only a few organizations have upgraded their procedures and equipment to meet the new standards." via DiagnosticImaging

Are you using Apple's 3D Touch at all? "When Apple unveiled 3D Touch, the company’s new input method for the iPhone 6s and 6s Plus (and, inevitably, other Apple-branded products), they made no effort to hide the fact they believe this is as important a feature as multitouch was all those years ago when it was first unveiled. They might be right, because obviously 3D Touch is only going to get better, more advanced as the years click forward. ...Right now I look at 3D Touch saving me a second, sometimes, and that’s not a second that needed saving. I’m not using 3D Touch right now because muscle memory is winning out over incorporating a new way to interact with my smartphone, but I don’t think that will always be the case. I think it would be pretty great if 3D Touch could give me interactive elements outside of the app." via PhoneDog

ShiftWear uses e-ink display to spruce up your sneakers "Once limited only to e-book readers, we've seen some rather innovative experiments that put e-paper displays or EPDs on more flexible material, like, say, a bracelet. Now David Coelho is presenting what could probably be the most creative application of that idea: putting EPD on shoes. ...For example, the batteries powering the EPD is charged either wirelessly or through every step you take. If you choose a static image, you won't even have to charge it at all since it won't be consuming power. But static images can become boring after a while and colorful animated images are definitely more eye catching. (Video)" via SlashGear

Atheer’s 3D smart glasses target doctors, engineers "The Atheer AiR Glasses looks like a virtual reality heads up display unit, but the wearer is able to see what is happening in the real world. As expected for smart glasses, information is overlaid in the wearer’s field-of-view, which the user can also interact with using familiar gestures, voice commands or even motion tracking. The device features dual ultra-bright displays with resolutions of 720p (1280 x 720) 60fps, and offers a large 50 field-of-view. ...AiR Glasses uses natural interactions such as tap, swipe, pinch, zoom to name a few, and supports a shorthand gesture library, voice commands and transcription, and head motion-based interaction. Visually, users are offered multiple panes around and mid-air, powerful 2D & 3D mixed content support, as well as personalized image optimization. (Video)" via SiliconANGLE

Are you an engineer or have display expertise? Contact us to be featured in the interviews section.

Does virtual reality technology spell the end for display homes? "The software, which works with the Oculus Rift headset, allows prospective home buyers to take a virtual tour of a new home and consider different designs and fittings in 3D real time. ...“To create a physical display home we need to plan them 18 months in advance. “So the design ideas, the materials, the technology we’re building into these homes is 18 months old before we’ve delivered the thing to the market. Using the technology, said Kanellos, “we’re able to showcase of-the-minute design ideas, and … we can build 20 virtual display homes at a fraction of the cost of the [physical] display homes”." via InDaily

New Technology Breakthrough for Transparent LED Displays "An emerging class of atomically thin materials known as monolayer semiconductors has generated a great deal of buzz in the world of materials science. Monolayers hold promise in the development of transparent LED displays, ultra-high efficiency solar cells, photo detectors and nanoscale transistors. Their downside? The films are notoriously riddled with defects, killing their performance. But now a research team, led by engineers at the Univ. of California, Berkeley (UC Berkeley) and Lawrence Berkeley National Laboratory, has found a simple way to fix these defects through the use of an organic superacid. ...MoS2, specifically, is characterized by molecular layers held together by van der Waals forces, a type of atomic bonding between each layer that is atomically sharp. An added benefit of having a material that is so thin is that it is highly electrically tunable. For applications such as LED displays, this feature may allow devices to be made where a single pixel could emit a wide range of colors rather than just one by varying the amount of voltage applied." via R&D Magazine

Why do touchscreens sorely need a new transparent conducting material? "ITO is only transparent when coated very thinly on a device. While this is convenient in terms of saving weight and space on small gadgets, it requires high energy to deposit such a film using a technique known as physical vapour deposition. Despite its drawbacks, the desirable properties of ITO, such as optical transparency, conductivity and stability, are difficult to match. Other metal oxide conductors such as fluorine-doped tin oxide and aluminium-doped zinc oxide can provide reasonable substitutes that almost match the properties of ITO. While using these oxides would reduce the cost of the raw materials, there is no enhancement of the technology with new properties. Like ITO, these metal oxide films are brittle and require significant energy input to coat on substrates. These issues have prompted researchers to look elsewhere for potential replacements which are not only much cheaper, but are more sustainable, display better performance and can be deposited on flexible substrates." via Phys.org

Do Human Machine Interfaces (HMI) Need Wide-Screen Displays? "Wide-screen, high-resolution displays are finding their way into many new HMI models. Wide screens have the advantages of allowing more control objects to be placed on the screen and of reducing the number of screen changes, where in a particular process or operation, changing screens would be cumbersome. However, there can also be the opposite problem when too many control objects are placed on one screen without much forethought. Some may argue that high-resolution displays are not needed in a manufacturing environment. However, for machine builders in a competitive market, a high-resolution HMI control panel can impart higher value to a machine. Either way, with the consumer market driving the volume of displays in the direction of high-resolution, wide screens, these may someday become the most economical and perhaps the only option." via Plant Engineering

Noise-immune Capacitive Touch Microcontroller (MCU) "MSP430FR2633 MCUs with CapTIvate technology offer developers a great deal of design flexibility without compromises. In an access control system, a proximity sensor may be needed to illuminate the screen and a large matrix of buttons to support user input. Self-capacitance provides higher sensitivity for proximity sensing, while mutual-capacitance allows for a large number of tightly packed buttons with lower crosstalk. CapTIvate technology provides flexibility to simultaneously support self-capacitance and mutual capacitance for an enhanced system solution. The MSP430FR2633 MCU can support 16 button self-capacitance and 64 button mutual-capacitance modes. TI's new CapTIvate technology, offered for the first time on the MSP430FR2633 MCU, provides advanced hardware features like a dedicated voltage regulator, frequency hopping, zero crossing synchronization and signal processing algorithms that prevent false detects in noisy environments. Furthermore, spread spectrum clocking lowers electromagnetic radiation, reducing emissions to system circuitry." via Automation World

Does Lightguide optics make smartglasses less socially awkward? "Scientists at the VTT Technical Research Centre of Finland have developed a display technology that may soon spell the end of awkward-looking smartglasses. The resulting displays are thin, lightweight, and much more discrete than those of current-generation hi-tech spectacles. ...A technique known as lightguide optics could now bring that future closer to reality by allowing the creation of next-generation smartglass displays. According to the scientists involved, the new displays are highly transparent, lightweight, only 1 mm (0.04 in) thick and, most importantly, can be manufactured in any shape to integrate with existing lenses. ...n a proof-of-concept, VTT spin-off company Dispelix Oy created a display that formed images within the user's field of view that were reportedly as large as a 60-inch TV seen from a distance of three meters (10 ft) away. For reference, this is approximately double the stated field of view for the Google Glass display." via GizMag

What did you think about today's news? Leave a comment here and share your thoughts.

Thursday
Nov192015

Display Technology News Roundup 11.19.2015

Image via Ultrahaptics

Display Alliance is sponsored by Smarter Glass (www.smarterglass.com), a leading distributor and solutions provider with nearly 15 years specializing in the global LCD display industry and PCAP touchscreens. This blog is an open resource for the display industry and welcomes content and sponsorship from readers. Contact us to discuss how we can work together on Display Alliance. For display panels, visit the Smarter Glass display database to search and compare thousands of panels side-by-side.

Taking Touch-Based Display Interfaces to the Next Level "It is time to take touch-based interfaces to the next level, and a UK startup called Ultrahaptics proposes to do just that by providing multi-point, mid-air, haptic feedback. The company has developed a novel approach using an old technology, promising to overcome the limitations found in current touch-based systems and open the door for a fundamental shift in the way people interact with electronic devices. ...In the medical arena, the incorporation of touch-based interfaces in systems presents its own hurdles. While touchscreens provide a fast and efficient way to interact with healthcare equipment, they also pose hygiene risks arising from the very physical contact that makes the interface so effective. What all these applications require is touch without touch. To meet this unique demand, developers have turned to 2-D arrays of ultrasound transducers, or emitters, to create haptic feedback systems. The arrays create airwaves that stimulate neuroreceptors in the skin, allowing users to feel sensations on their hands. By modulating the output of the emitters, a system can induce a variety of tactile sensations. However, implementing this approach comes with a fair share of difficulties." via IHS Electronics360

4-D laser printing: holograms and beyond ""Not long after we received the NSF funding, we were able to create something called the direct-write laser scanner (DWLS), which allows us to create nearly perfect geometric phase holograms," says Escuti, an engineer at North Carolina State University. "They look like flat, semi-translucent plates, but they give us unprecedented control over the behavior of light. We can use them to make more efficient displays for mobile devices, sensors with greater resolution, and, frankly, we're still discovering all of the potential applications for this technology." To make geometric phase holograms, the DWLS "prints" using an ultraviolet laser on a super-thin film--only about 50 nanometers thick. The film is made of a photoreactive polymer that responds to both the intensity and the polarization of the light. When the DWLS is done printing, a much thicker layer of liquid crystal is applied, amplifying the pattern on the underlying thin film. To understand how the DWLS works, you have to understand that it doesn't have an inkjet--it prints light, and it prints in four dimensions." via National Science Foundation

How LED display technology creates this dazzling, data-driven chandelier "Soaring 33 stories above downtown Pittsburgh and built to use half the energy consumed by typical office buildings, this LEED Platinum-exceeding glass and steel edifice, complete with double-skin façade and solar chimney, has been heralded as the greenest skyscraper ever completed. (Seattle’s six-story Bullitt Center still likely rules when it comes to green commercial buildings.) And as for the Tower at PNC Plaza's main lobby, it's one high-rise lobby that can never, ever be accused of being soulless. ...And, as PNC explains, the installation itself is, go figure, super-efficient: Each panel has liquid crystal film that becomes clear when it receives electricity, or opaque without it. Inside is a grid of 8 LEDs that show a range of colors. These elements can be used simultaneously or separately to create animations with a variety of color, motion, and diffusion. The liquid crystal film draws no energy when opaque and uses very little when transparent, while LEDs use less energy than incandescents, making the Beacon highly energy-efficient." via Mother Nature Network

Can China's LCD Panel Industry Dominate By 2018? "It is being predicted that China will become the world leader in LCD panels in 2018 by beating Korea, as the nation began to make massive investments in LCD panels used in smartphones and flat TVs. Japan’s Nippon Keizai Newspaper reported that China’s four leading display companies, such as the BOE Technology Group, will build seven big factories in China with investments of about US$25 billion for three years. According to the newspaper, the investment volume is very large compared to the fact that Samsung Electronics invests US$3.5 to 4 billion in the LCD business a year. Chinese companies with strong financial support from the Chinese government will lift China over Taiwan in 2017 and Korea in 2018 in terms of the volume of LCD panel production, the newspaper expected. It is said that despite an economic slowdown, China began such massive investments as it intends to escape from the market structure where China depends on Korea and Taiwan for 70 percent of its demand for LCD panels. It is expected that this move by China will give Korean companies two troubles – a drop in exports to China and a price war triggered by an increase in LCD panel supplies by China." via BusinessKorea

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

In Search of the Perfect Pixel: What Are the New Developments in LCD Panels? "Another development that we do not readily see immediately is the inclusion of Simple Network Management Protocol (SNMP) in displays. It is an Internet-standard protocol for managing devices on IP networks. Historically, we have had devices that typically support SNMP, including routers, switches, servers, workstations, printers, modem racks– and now finally displays, as LG showed at InfoComm 2015. SNMP is widely used in network management systems to monitor network-attached devices for conditions that warrant administrative attention. Having this available on large scale displays is a great addition, but one that may be overlooked. Consider the ability to monitor and manage the health of multiple displays across an office complex using standard tools the IT department already has. Also, think about the implications for digital signage applications. One last development that we see gaining traction is System on a Chip or SoC for short. Samsung did most of the pioneering work on this and now has been followed by others. The SoC is a mini computer built into the display in the form of a chip. It can act as a media player for digital signage or perform other computer-based tasks but it eliminates the need for external devices in many cases. Some of these, like the units developed by Samsung run proprietary software, but we are seeing more “open” platforms, like the WebOS SoCs offered by LG, and the Android powered devices offered by BenQ." via AVNetwork

What is "technorating" with digital signage? "Back in 2008, LG Electronics coined the term "techorating" for that latter one, a fusion of technology and decorating, using tech to create or be an element of interior design and decor. At the time, LG was focused more on the consumer- or residential-grade market, even enlisting the help of celebrity interior designer Doug Wilson of TLC's "Trading Spaces" as the first official "Techorator" to develop consumer tips and tricks to guide consumers through the techorating process. Since then, LG and all the digital signage display manufacturers from Christie to NEC to Samsung have explored ways their professional- or commercial-grade displays or projectors could be used in a kind of digital signage techorating for professional spaces and businesses, whether it's in a corporate or hotel lobby, restaurant dining room or even a museum. Display provider Planar Systems Inc. helped lead the charge in the commercial space, with its Mosaic system that allowed its displays to be hung in artistic or unusual configurations for video walls that broke out of the square or rectangular box on the wall. But the trend has moved beyond any one company or even any one industry, as the Society for Experiential Graphic Designers and other professional groups representing architects, interior architects, interior designers and interior decorators have started to take a longer look at including display technology in their plans, sometimes even before a single brick is laid." via Digital Signage Today

All-inorganic perovskite quantum dot display breaks Cd-barrier "Ever since the first cadmium selenide (CdSe) QD-based light-emitting devices (QLEDs) were reported in 1994, the dominant materials for QLEDs investigated since then have been limited to wurtzite or zinc blende Cd-based QDs. Similarly, the best developed and studied colloidal QD lasers have been fabricated from Cd-based semiconductors. Now, researchers have presented a new family of photoelectric materials for light-emitting devices: colloidal all-inorganic perovskite cesium lead halide QDs. This new material could find applications in LEDs and lasers, and has an especially big potential in high-performance displays, lighting, monochromatic narrow-band photodetectors, and optical communications." via Nanowerk

Bright Blue PHOLEDs Almost Ready for TV "Phosphorescent OLEDs (PHOLEDs) use only one quarter the energy of conventional OLEDs. Green and red PHOLEDs are already used in smartphones and TVs, leading to longer battery lives and lower electricity bills, but developing the kind of bright deep blue PHOLEDs needed for video displays has proven challenging. Now scientists have developed what they say are the brightest deep blue PHOLEDs reported so far, work sponsored by Universal Display Corporation and the U.S. Air Force. The researchers added their new lights nearly meet the most stringent requirements of the National Television Systems Committee (NTSC), the video standards used across most of the Americas. "There have been previous works that reported PHOLEDs having similar color as ours, but their brightnesses were very dim, about 10 times less," says study lead author Jaesang Lee, an electrical engineer at the University of Michigan, Ann Arbor. "A combination of high brightness and deep blue color is quite revolutionary."" via IEEE Spectrum

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Can Projectors Compete with Flat Panel Displays? ““Typically projectors are more flexible than flat screen displays because the size of the image projected can be adjusted to meet the needs of the customer and tailored to specific applications,” adds Damien Weissenburger, head of corporate and education solutions at Sony Professional Solutions Europe. “For large rooms which require large screens – more than 75in – or a more flexible format – that is, something other than 16:9 – projection remains the main technology. Projectors often provide a more affordable and flexible solution which can appeal to budget-conscious AV managers.” Versatility, affordability, ease of installation are all contributing to projection’s longevity – even as flatpanel displays are getting larger and, in theory, displacing what would previously have been projection installations. But projectors have an important advantage here too." via Installation

Will touchscreens be replaced by eye-tracking display technology? "Eyefluence, a company that has created a unique eye tracking system for use with today’s virtual reality/augmented reality headsets, emerged from stealth today with a $14 million Series B funding round. “Eyefluence transforms intent into action through your eyes. We believe anything you can do with your finger on a smartphone, you should be able to do with your eyes on a head-mounted display — only faster,” Eyefluence CEO Jim Marggraff told TechCrunch. While Eyefluence isn’t the first eye-controlled operating tool, it claims to be the first one to interpret intent with your eyes in real time. With eye controllers I’ve seen in the past, you need to stare to show intent, Eyefluence wanted to change this to a glance." via TechCrunch

How can large touchscreens be like your smartphone? "The Business Research Company’s report “Touch Screen Market Globally 2015” finds that since 2009, it is projected -capacitive (P-CAP) technology which has captured the highest-volume touch categories of mobile phones. This success has been driven by a feature set which includes an effectively unlimited lifespan conferred by a resistant all-glass surface, edge-to-edge design capability (with no requirement for bezels) and high levels of sensitivity. PCAP manufacturers are now taking this technology to screens as large as 85 inches. Four important aspects of the screen design are: speed, accuracy, EMI immunity and integration. Where consumer phones have to register just one or two touches on a screen of around 4.5-inch diagonal, commercial touch screens of 47-inch diagonal that can register between 10 and 40 touches with a precision of 1mm are now commonplace. The area of a 16:9 format screen roughly quadruples when the diagonal doubles." via ElectronicsWeekly

Automative Touchscreen Buttons You Can Actually Feel "Bosch has come up with an experimental solution to our touchscreen woes: A screen with simulated "buttons" that you can navigate by feel, without taking your eyes off the road. Haptic elements in the screen allow users to distinguish different "keys" on the touchscreen by feel—rough, smooth, and patterned surfaces can be created to denote individual keys or functions. "The keys displayed on the touch screen have the feel of realistic buttons so that it is often possible for users to find their way around the keyboard without looking while operating the applications," Bosch says. "They can keep their eyes on the road for much longer periods, substantially enhancing safety while driving"" via Road and Track

Are you an engineer or have display expertise? Contact us to be featured in the interviews section.

How Can a Touchscreen Know the Angle of Your Finger? "A Carnegie Mellon University spinoff called Qeexo might have just one-upped the iPhone 6s and 6s Plus’s 3D Touch capabilities—and instead of buying a new phone for the new feature, you’d just need to upgrade it.The researchers behind FingerAngle developed a brand new algorithm that allows a smartphone to estimate the pose of a finger, in 3D, as it makes contact with a touchscreen. This includes its angle relative to the display, as well as any rotation of the finger while it’s making contact. It’s subtle, but the shape of a fingertip while pressed against a glass display is very distinct based on what part of the finger is making contact, and its angle. And this is what the researchers rely on to determine a finger’s orientation relative to a touchscreen. So why is this useful? To do on-screen rotations with a touchscreen currently requires the use of two moving fingers. But the tiny display on a device like a smartwatch barely has enough room for a single digit. (Video)" via Gizmodo

'BitDrones' Offer 3D Computer Displays Based on Programmable Matter "How's this for a bad-ass future? "Interactive self-levitating programmable matter." This is how researchers at Queens University's Human Media Lab are describing their new virtual reality scheme, dubbed BitDrones, set to be unveiled Monday at the ACM Symposium on User Interface Software and Technology in Charlotte, North Carolina. The floating interface is enabled by swarms of nano quadcopters (the drones of BitDrones), of which there are three varieties. "PixelDrones" come equipped with a single LED and a small dot-matrix display; "ShapeDrones," which are intended to form the building blocks of 3D models, come covered in a fine mesh and a 3D printed geometric frame; and, finally, "DisplayDrones" are fitted with a curved flexible high-resolution touchscreen, a forward-facing video camera, and an Android smartphone board. All three varieties then come equipped with reflective markers, allowing them to be tracked in real-time using motion capture technology. (Video)" via Motherboard

Planar Introduces Transparent OLED Digital Signage "Reminiscent of those products dreamt up by science fiction filmmakers – where video content seems to float on an almost-translucent display – the Planar LookThru OLED transparent display uses OLED technology to eliminate the need for a backlight or enclosure. According to Planar, transparent OLED technology overcomes one of the main hurdles to transparent LCD display adoption by making it possible to create truly see-through installations unobstructed by enclosures that sit behind the displays. The LookThru OLED transparent display allows users to view video content, digital images and text on a virtually frameless glass display while enabling designers to overlay this content onto real objects or scenes that sit behind the glass. The company first showcased a transparent OLED technology display demonstrator at the Integrated Systems Europe event in February." via Government Video

Wearable Mini-Display Helps Medical Doctors Save Patient Lives "Opting for a minimalist, hands-free approach, user-experience design firm Method, in collaboration with Bay Innovation, have designed a new HUD (Heads-up Display) named Vivi that instantly delivers patient vitals and supplementary materials to doctors mid-operation. Most notable for its simplicity, the wearable pops over one eye when operating and subsequently swivels out of the way when not needed, making for a practical-use case that’s as serviceable as it is modest. Peering into the device, surgeons are presented with a diminutive 8-bit-esque display configurable through their smartphones." via psfk

Apple’s 3D Touch displays on the iPhone 6S or 6S Plus can be used to weigh objects "In a playfully written blog post, Simon Gladman talks about his newest app, which is called the Plum-O-Meter. As its name implies, the app leverages the 3D Touch technology in his iPhone 6S to act as a scale of sorts that tells the user which of the objects placed on the smartphone’s screen is heavier. ...Technically, the iPhone’s multitouch display can simultaneously sense up to five objects at a time, iDownloadBlog points out. "I did originally build this app for grapes, but they’re too light to activate the 3D Touch," Gladman writes in his blog post. (Video)" via Digital Trends

Folium Optics brings plastic displays to medical and defense markets "Folium Optics was founded two years ago by Kitson and John Rudin, after both had worked on display solutions at Hewlett Packard's HP Labs Bristol research center. When HP's goals shifted, the pair set up Folium to pursue flexible displays, and rather than basing their efforts on any existing HP technology, chose to begin with a clean sheet - "applications-driven and technology-agnostic," commented Kitson. ..."We use a similar materials set to a conventional LCD, but dope it with dye molecules. These molecules are rod-shaped and designed to orientate themselves with the liquid crystals under an applied voltage. When the liquid crystals rotate, the dye molecules rotate too." Controlling the profile that the dye molecules present to an observer also controls the strength of color perceived by that observer, and does so without the need for the polarizers or related technology which can contribute to the cost and complexity of other LCD systems. "This principle is called a guest-host LCD and has been known for some years, although it went out of favor as interest focused on backlit displays," noted Kitson. "It has been a little neglected; so we are revitalizing it, improving the materials and combining them with flexible plastics."" via Optics.org

Why Display Manufacturers Need A Hand "While we see some companies capitulate during crystal cycle busts (asset impairments/sales by CPT is a recent example) we have not seen mergers on the scale of AUO buying Innolux or AB InBev buying SAB Miller. Lack of scale economies is one reason for this, perhaps. As I have presented at SID conferences, adding AMLCD area capacity does not seem to reduce AMLCD area cost. A big merger might lead to a swanky party but the hangover would certainly lead to a long-term headache trying to load the increased capacity with profitable product. If there is no advantage to consolidation, we may see the AMLCD industry continue to evolve along national lines of interest. China is doing what it did in LED and PV industries and it hopes to do in the IC industry: cultivate national champions and capture global share. If this is the future, what can we do but give display makers a hand?" via Display Daily

What did you think about today's news? Leave a comment here and share your thoughts.

Friday
Oct162015

Display Technology News Roundup 10.16.2015

Image via GelTouch

Display Alliance is sponsored by Smarter Glass (www.smarterglass.com), a leading distributor and solutions provider with nearly 15 years specializing in the global LCD display industry and PCAP touchscreens. This blog is an open resource for the display industry and welcomes content and sponsorship from readers. Contact us to discuss how we can work together on Display Alliance. For display panels, visit the Smarter Glass display database to search and compare thousands of panels side-by-side.

Could You Make Your Own Buttons with a Gel Touchscreen? "Researchers hailing mainly from the Technische Universität Berlin in Germany built a prototype of a touch screen with a layer of gel atop it that can change from soft to stiff when heat is applied—making it possible to create temporary buttons in all kinds of shapes that needn’t be defined in advance, which users can feel and use to interact with the display. Such technology could make it easier to use a range of electronics, from in-car displays to smartphones and wearable gadgets, to do things like receive alerts or input information without needing to glance at the devices themselves. (Video)" via MIT Technology Review

Researchers Create Nanocrystalline Thin-Film Transistor for Next-Generation LCD Screens "If you're reading this story on a screen with a liquid crystal display, thank thin-film transistors. Thin-film transistors function like standard semiconductor transistors, but are deposited on top of a layer of glass. In LCD screens, this allows the transistors to be embedded directly in the screen, which improves image stability. Researchers at Korea University and the Samsung Advanced Institute of Technology have now developed a new type of thin film transistor that's significantly faster than its predecessors -- an important step toward speeding up image display on devices like TVs and smartphone screens. The scientists made the transistor from zinc oxynitride, or ZnON, which they then plasma treated with argon gas." via AZoNano

How LCD screen glare could be solved with sunglasses "New sunglasses brand NoonWear, which uses "proprietary implementation of polarization technology," has launched NoonWear Ones, the "sunglasses that help owners of LCD screens, like laptops and tablets, use their devices outdoors." ...“NoonWear sunglasses provide traditional sunglass light protection and UV ray blocking, but they also let you see your laptop,” said Charles Barr, co-founder of NoonWear and an MIT graduate, in a statement. “We want to bring the LCD generation outdoors and let people use their electronic devices while in the sun.”" via Boston Business Journal

Will Foxconn Close Deal to Control Sharp's LCD Business? "Foxconn Technology Group has signed a letter of intent to buy a stake in Sharp Corp.’s liquid-crystal display business in a deal that would give Foxconn management control as the Japanese electronics maker spins off the unit, according to people familiar with the plan. ...Foxconn wants to model this deal on Chairman Terry Gou’s personal investment in Sharp’s Sakai Display operations in 2012, which resulted in the Taiwanese company having management control over the LCD factory, one of the people said. Hon Hai is Foxconn’s largest unit and the world’s biggest maker of iPhones. The company also makes iPads, Microsoft Corp.’s Xbox console, and personal computers for Hewlett-Packard Co. and Dell Inc. Hon Hai gets about half its revenue from Apple and is seeking to expand beyond assembly to offer components, including displays and semiconductors." via Bloomberg Business

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

A low-power reflective display with a wide color gamut "High-resolution reflective displays with motion image capability and a broad color gamut are considered by many to represent the next-generation display technology. Reflective displays dramatically reduce power consumption and allow for the realization of new display applications, such as smart watches and digital textbooks. In recent years, the electrophoretic display (EPD)—in which images are formed by the electronic rearrangement of charged pigment particles—has been widely implemented as a low-power display for e-book applications. The optical diffusion of EPDs is, however, essentially Lambertian, resulting in relatively low reflectivity. Narrow color gamut filters must therefore be used to avoid further reduction in the reflectivity, negatively impacting the display properties. To overcome this issue, we have developed a reflective color liquid crystal display (LCD) using a mirror electrode and a diffusion film that is designed to diffuse light only in its direction of travel. This display system requires that the chromaticity of optical components be suppressed, and establishes a method by which the optical diffusion of reflected light can be controlled. This results in a display with a wide color gamut and high reflectivity, making it optically similar to white paper." via SPIE

Will Lasers Light the Way for Projectors in Digital Signage? "Replacing lamps is a costly endeavor, and translates to steep labor costs when lamps reach their end of life after 1,500 to 4,000 hours of use. And the accumulation of dust typical in projectors that use lamps further accelerates their demise. However, laser phosphor projectors, which emit a more consistent light output over their lifetimes, are changing the game. With lasers as their light sources, these distinctly modern projectors offer up to 20,000 hours of projector life at maximum brightness. Lamp-less projectors also offer flexibility that is a major benefit in an environment that experiences heavy foot traffic on a daily basis. They have given users more placement options for display signage installations, for example. With their robust durability and convenient flexibility, laser phosphor projectors are positioned to shine a bright light on digital signage in the transportation industry." via Mass Transit Magazine

Japan Display plans R&D hub in China "Japan Display plans to open a smartphone panel development site this year in the southern Chinese city of Shenzhen, employing about 100 people. In addition to sending staff from Japan, the company gradually will transfer engineers from a design site in Taiwan. Besides handling designing, marketing and quality control, the site will also have a unit in charge of procurement. Conducting procurement operations there will make it easier to capture smartphone technology trends faster, and the company said sending marketing staffers from Shanghai was not enough to respond to customer needs adequately." via Nikkei Asian Review

Can the display industry in Korea continue to grow? ""Korea's longtime leadership in displays is increasingly challenged as Chinese and Japanese competitors are quickly narrowing the gap with Korean companies with massive investments in displays," said Minister of Trade and Energy Yoon Sang-jick at an event at the JW Marriott Hotel in southern Seoul, Friday. "We need to think how to keep the country competitive in the industry." Yoon referred to China's recent approval for BOE to invest in super-sized OLED displays using advanced 10.5-generation glass-cutting technology and the launch of JOLED in Japan. He told participants that the country plans to offer more financial benefits such as tax exemptions to companies focusing on OLED projects. "With a combined global share of 42.8 percent, the country is still leading the industry. But the issue is that the market has already been crowded due to weak demand and continued oversupply," said the minister. Korea has designated OLEDs as one of the next-generation key items. " via The Korea Times

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

What's Next in Display Technology? "Reaching a bit further in the health sector beyond display apps, electro-stimulation, medical monitors are coming. UV skin docimeters and even electronics in contact lenses hold promise because of silver nanowire's incredible flexibility and transparency versus other materials. Major electronics OEMs like Samsung, Lenovo, Karbonn, NEC, Toshiba, and LG have shipped products ranging from mobile phones to large-area monitors using silver nanowires. Many others are in development or in the pipeline but not yet public. The switch is on by companies in both the consumer and industrial sectors, driven by product improvements and manufacturing cost benefits. Technologies that are synergistic with silver nanowires are providing opportunities to explore new applications." via EE Times

Should We Say Goodbye to the Display Screen at Work? "Here is a closer look at some screen-free interfaces that could revolutionize the way we work, as well as some of the challenges companies may face as they become more widespread. Ambient notifications: The ORBneXt, a screenless cube-like device sold by Advanced Lumonics LLC, continuously tracks any data stream you choose and changes color to notify you to take action when, say, an important email arrives or product inventory drops below a threshold. You could, for instance, program the cube to glow green when you get an email from your boss or an important collaborator. These kinds of screen-free, background notifications are essentially a way to curb the digital itches we tend to continuously scratch—such as checking our inboxes or stock prices—guiding us back to more productive activities." via The Wall Street Journal

Hello, Retina: New iMacs Get Eye-Popping Displays "Last year, Apple began offering an upgrade to 27-inch iMac called Retina 5K that quadrupled its resolution (5120x2880 pixels)—so many pixels that they seemed to just melt away, and made text look like the printed page. But Apple originally targeted professionals by charging a $700 premium for iMacs with these screens. Now Retina screens come standard on all 27-inch iMacs, starting at $1,800. There’s also a new screen for the smaller 21.5-inch iMac. At a resolution of 4096x2304 pixels, it packs 4.5 times as many as before for $1,500, a $400 premium. The new color capabilities may take more of an experienced eye to appreciate. The human eye and high-end cameras can see a wider range of colors than most LCD screens can reproduce. But in the last year, manufacturers have figured out how to amp up the color range (called gamut) even on consumer-level monitors and TVs." via The Wall Street Journal

Is Ultrasound the Future of Touchscreens? "UK start-up Ultrahaptics, for example, is working with premium car maker Jaguar Land Rover to create invisible air-based controls that drivers can feel and tweak. Instead of fumbling for the dashboard radio volume or temperature slider, and taking your eyes off the road, ultrasound waves would form the controls around your hand. "You don't have to actually make it all the way to a surface, the controls find you in the middle of the air and let you operate them," says Tom Carter, co-founder and chief technology officer of Ultrahaptics. Such technologies, proponents argue, are an advance on devices we can control via gesture - like Nintendo's Wii or Leap Motion's sensor device that allows users to control computers with hand gestures. That's because they mimic the tactile feel of real objects by firing pulses of inaudible sound to a spot in mid air." via Khaleej Times

Are you an engineer or have display expertise? Contact us to be featured in the interviews section.

Novel Nanostructures Could Usher in Touchless Displays "In research published in the journal Advanced Materials, the researchers at Stuttgart’s Max Planck Institute for Solid State Research and LMU Munich, Germany have developed nanostructures capable of changing their electrical and optical properties when a finger passes by them. The resulting device could usher in a new generation of touchless displays. While touchless displays raise the question of whether every finger that passes by a display’s surface is really intended to interface with the computer, the researchers believe this new interface will address the problems of mechanical wear suffered by today’s touch screens over time, as well as concerns over screens, especially at ATMs, being transmission vectors for viruses and bacteria. Computer hardware analysts aren’t completely sold on whether touchless displays are really next step in computer interfaces. That debate notwithstanding, the technology that enables this approach is impressive. The researchers have developed what amounts to a humidity sensor that reacts to the minute amount of sweat on a finger and converts it to an electrical signal or a change in color of the nanostructured material. (Video)" via IEEE

Is Apple’s 3D Touch the Start of a New Interface Revolution? "It’s all very heady and philosophical—Petschnigg apologized a few time during our conversation for having his head so far in the clouds. Developers are still figuring out what this all means. Petschnigg imagines you could use Peek and Pop to look through your notes faster, for one thing. And who knows what else? “We know basic selection, text selection is going to change,” he says. “Object selection is going to change. We know on the tools side we gained an entirely new dimension of expressiveness.” They’re prototyping a lot of new ideas. “Diagram tool!” he proclaims at one point, like he just remembered it. “In our diagram tool, if you want to pick up a shape, duplicate a shape, stamp a shape, these all start to feel totally natural." There’s one more example he’s excited about: window management. As the world moves from mouse and keyboards to touchscreens, even for productive uses, how do we deal with having a dozen apps running at once? Right now, Petschnigg points out, the metaphor fails. “You know, you click on the window, it comes to the front. The same with ordering of shapes on the screen.” When you want something else, you Alt-Tab, which no one does, or rely on some hacky workaround. “Now,” he says, “you can push things back. You can’t push a window back today. Now, all of a sudden, the street that used to be one way is now two way. Things will change.”" via WIRED

Is 3D Touch 'game-changing' for mobile developers? "3D Touch is a new screen technology that Apple developed for the iPhone 6S and detects variable pressure placed on the screen. It works by using capacitive sensors, which can measure microscopic changes in distances between the backlight and the cover glass as pressure is applied. ...3D Touch is going to improve the overall experience of navigating and shortcutting across all touch screen applications. I do think games are best placed to show if off, though. Knowing what 3D touch is capable of, I think game developers are going to come up with all sorts of new creative gameplay which incorporates the tech. There’s going to be games that people will want to download just to try out those new types of gameplay, things that will only be possible with 3D Touch." via Develop

Communicating with Touch "The heart of Sensel Morph consists of two layers: an electrode grid made up of 20,000 force-sensing elements and a sheet of polymer material that enables each sensing element to measure force over 4,000 detectable voltage levels. This means that the Morph can detect anything from the delicate touch of a paintbrush to the hard slap of a hand. Sensel uses an advanced lithographic manufacturing process to create the electrode grid, unlike most force-sensing arrays, which are typically screen-printed on Mylar film. The advantage of Sensel’s approach is that the lithographic process can produce a sensor array that consistently delivers high-resolution data, where screen-printed systems usually cannot." via IHS Electronics360

Are gaming display touchscreens the best for skill-based games? "So let’s add what happens in a casino environment to the touch screens on slots machines. Drinks get spilled, cigarettes are smoked leaving nicotine and smoke film, people have everything from hand lotions to body oils to a range of other substances on their fingers that can build up on the touch screens making it harder overtime, particularly without regular cleaning, for the screen and finger connection to be properly made and recognized on the touch screens. Net result of a dirty touch screen, is having to tap the screen a few times for your command to be recognized. Not real efficient for a skill game that relies on the player’s speed and timing along with game responsiveness. As the technology standards related to skill-based gaming are still evolving and pending approval, it is likely the type of circumstance described here will be included in the testing process. Yet I would suggest this very issue will be added reason for the skill-based games to migrate from traditional slot machine boxes to player’s smart phones or tablets. During a media only Skill-Based Gaming Panel at G2E, Bryan Kelly, SVP of technology for Scientific Games, in reaction to concerns about the future cost of games to operators by Melissa Price, SVP of gaming for Caesars Entertainment, disclosed that other form factors such as tablets would likely be a part of the future way for skill-based games to be played." via Gaming Today

OLED Gets Cheaper: LG Slashes Its OLED TV Prices "In what could prove to be a watershed moment in the history of TV technology, LG has announced that it’s slashing the prices of its OLED TVs to such an extent that they can now compete on price with some LCD TVs. LG’s new pricing takes between 30% and 45% off the prices of its new flat-screened EF9500 and curved EG9600 4K UHD TVs, as well as bringing full HD OLED down to below $2,000 for the first time. The full details of LG’s new OLED pricing scheme run as follows." via Forbes

What are the pros and cons of video walls vs. large-format displays? "A tiled LCD video wall will be less expensive and will have greater flexibility in how the final image is displayed than a single unit. For instance, a site may want to cover a long, thin wall or a curved wall that a single large-format display doesn't fit on, but deploying the solution will take a little more effort and the finished product will always have the bezel line in the image. A single large-format display is easier to deploy and can show great UHD content without a bezel break, but there may be locations that simply can't accept a single panel this large. A 98-inch panel doesn't fit in the average elevator or in areas with tight corners." via Digital Signage Today

What Is "Internet of Display"? Are you Viewing Your Information Through a Straw? "Most of you have probably heard of the term Internet of Things (IoT) which refers to the fact that millions and soon, probably billions of devices will be connected to information via the Internet. Recently Andrew (Drew) Jamison at Scalable Displays has been chirping about what he calls the “Internet of Display” (IoD). Since reading his article introducing the concept, I have been having spirited debates with a number of people about this concept – and trying to decide if the term has merit and if so, a concise way to describe it. In this article, I will lay out the concept in more detail as I understand it and I invite you to chime in with comments and your input. One of the trends behind IoT and IoD is that functionality and data that used to reside on PCs, workstations or company servers is moving to the cloud. The result is that the conventional display/workstation paradigm is changing and moving in the direction of simply a “dumb” display being all that an end user needs to do complex tasks. For example, this means that a CAD designer can interact and render designs in the cloud delivering just images to his display. A digital signage media player can migrate to the cloud delivering the content playlist in real time. A control room can use the cloud to aggregate multiple sources of data and video using management software resident in the Internet to deliver images to the display solution. A 360-degree video of computer-generated or video images can reside in the cloud streaming to VR headsets or mobile devices." via Display Daily

What did you think about today's news? Leave a comment here and share your thoughts.

Monday
Sep212015

Display Technology News Roundup 9.21.2015

Image via Honeywell

How Display Technology Transforms Control Rooms "Regardless of the size of the display, ease of use is a key design factor. Operators are being asked to control far more pieces of equipment, and many of them are complex machines that run at far higher speeds than their predecessors. That means operators must be able to understand and analyze a lot of information. "The amount of data available today is an order of magnitude different than several years ago," Scott says. "We’ve moved to graphics, but a human’s visual awareness to see everything and the amount of information people can process hasn’t changed. Going forward, HMIs need to provide better information and keep the operator in the loop so they truly know what’s going on. When something goes off the rails, they need to know what steps to take." Many HMIs are being designed to help operators focus in on problems. And when problems occur, they’re providing information that helps operators know what to do to rectify the situation." via Automation World

Apple 3D Touch – the iPhone 6s reboots multitouch "Apple revealed the iPhone 6s and iPhone 6s Plus, and along with them a new sort of multitouch: 3D Touch. This system has Jony Ive saying that "tapping, swiping, and pinching have forever changed the way we interact with our digital world" - now it's time for Peek and Pop. This is what you might recognize as a technology called Force Touch, but here Apple is suggesting it's different enough from previous iterations that it'll be called something different: 3D Touch. According to Ive, "you can dip in and out of where you are, without losing sense of your context." This system has a light press for one action and a deep press for another. To see and sense these touches, the iPhone 6s and iPhone 6s Plus works with capacitive sensors integrated into the backlight of the phone's display." via SlashGear

The Smart UI Design Behind Apple’s Frictionless 3D Touch "You could think of 3D touch as a right-click for a touchscreen. It’s a gesture that unearths a vast amount of extra information and functionality with very little effort. To make sense of this new form of interaction, Apple has given different types of presses playful nicknames—peek and pop—that fit neatly into the vocabulary we already understand with swipe, tap and pinch. Peek and pop have essentially turned the iPhone operating system into nesting dolls of information. Press on the screen a little harder than usual and you’ll experience peek—a preview of information like emails, directions, or photos. Press harder yet and you’ll “pop” into that information deeper, navigating directly to the app itself. “It isn’t really a new gesture, just an extension of one you already know very well,” explains Tobias van Schnieder, lead designer at Spotify. ...True 3D touch doesn’t feel essential in the way that the first generation of multi-touch interactions do today. It might not for a while." via Wired

Profit Margins for Large-Area Thin Film Transistor Liquid Crystal Displays to Drop ""Even with recent price declines, many large panel sizes currently sell at marginal profits," Annis said "At least for now, panel makers have decided to keep utilization high and minimize overhead costs, in order to chase as much profit as possible while they are still able to. The downside to this strategy is that panel inventories at set-makers have ballooned, widening the gap between TV panel shipments and TV set shipments." As this excess inventory is sold down, panel prices are also expected to decline rapidly. Large-area display profitability will likely follow the same trajectory. At the same time, a substantial number of new eighth-generation (Gen 8) factories are currently ramping up production. Dedicated capacity for large-area displays will grow at a rate of 6 percent in 2015 and 8 percent in 2016, the highest rates in several years." via I-Connect007

Displays for a New Generation of Electronics "Whether the display serves a large-screen TV, a smartphone, or a wearable device, power consumption plays a key role in the design process. The issue of energy efficiency poses a problem for OLEDs that rely on fluorescent emission. This technology converts only 25% of the excitonic energy used to create light, with the remaining 75% lost as heat. In the late 1990s, Princeton University and the University of Southern California found that the use of soluble phosphorescent small-molecule materials improved the energy-to-light conversion efficiency to nearly 100%. UDC has since refined and advanced phosphorescent OLED (PHOLED) technology. In addition to achieving greater energy efficiency, PHOLED technology reduces the display’s operating temperature considerably. Because higher temperatures accelerate degradation of the organic materials, the heat reduction extends the life of the PHOLED and reduces the amount of air conditioning required to keep the display cool." via IHS Electronics 360

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Quantum dots move into monitors "According to the Massachusetts Institute of Technology (MIT) spin-out QD Vision, upon whose “ColorIQ” technology the displays are based, that represented the world’s first quantum dot monitor. ...When illuminated by the blue LEDs that typically feature in LCD backlights, the quantum dots act like a phosphor, generating light across the rest of the visible spectrum. The specific wavelength of that re-emitted light depends on the precise size of the quantum dot nanocrystals, and can be carefully controlled. According to the company, it means that its Color IQ optics emit “pure, finely-tuned colors”, enabling better color saturation and color rendering compared with standard LCD screens. “Most LCD TVs available today offer size and definition at the expense of color, using a smaller color gamut that only achieves 60-70 percent of the NTSC standard,” claims the firm. “With Color IQ optics, LCD TVs and other displays can achieve 100 percent of the standard.”" via Optics.org

Military display technology lets commander 'see through' armour "Developed by defence firm BAE Systems, the BattleView 360 is a digital mapping system that uses cameras and sensors to track the positions of all surrounding features of interest in both two and three-dimensional modes. A specially designed headset can be synced to vehicle cameras to allow commanders to 'see through' their vehicles in both visual and infra-red in real-time, or alternatively the feed can be transmitted to a touch-screen display. The live-feed will be overlaid with information from other vehicle systems and the touch-screen display can be used to identify friendly and enemy forces, for route planning and to let the commander view the display of other crew members, such as the gunner." via E&T Magazine

Will the next big Samsung phone have a display screen that folds in half? "With Samsung's phone sales looking troubled these days, the company has been forced to differentiate its devices with features like dual-curved displays and the S Pen stylus. A phone with a foldable display could be exactly what Samsung needs to win back customers who have defected to cheaper Chinese devices or Apple's iPhones. A foldable display isn't without precedent. In 2008, Samsung showed off a prototype of a display that folds in half at The Society for Information Display (SID), an event that showcases innovative display technologies. You can see the prototype display in action in the video above. (Video)" via Mashable

Will in-cell touch displays for smartphones rise rapidly? "The share of in-cell and on-cell touch display solutions within the smartphone industry is rising fast, according to WitsView. With Japan panel makers as the leading adopter, the combined share of in-cell and on-cell solutions in the smartphone market is expected to hit 40.6% in 2015 and will likely reach 47.8% in 2016, as these technologies will subsequently gain support from other panel makers from South Korea, Taiwan and China. "In-cell technology began to attract the market's attention when Apple introduced it to the iPhone 5 series," said Boyce Fan, senior research manager for WitsView. "The technology gained additional momentum as Japan panel maker Japan Display (JDI) seized the opportunity to apply its hybrid in-cell solution to all of its high-end smartphone panels. Since then, JDI has aggressively promote this technology in China, raising both the reputation of in-cell displays in the high-end smartphone market and the panel maker's brand recognition."" via DigiTimes

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

What Is HDR (High Dynamic Range) Display Technology? "HDR-capable displays can read that information and show an image built from a wider gamut of color and brightness. Besides the wider range, HDR video simply contains more data to describe more steps in between the extremes. This means that very bright objects and very dark objects on the same screen can be shown very bright and very dark if the display supports it, with all of the necessary steps in between described in the signal and not synthesized by the image processor. To put it more simply, HDR content on HDR-compatible HDTVs can get brighter and darker at the same time, and show more shades of gray in between. Similarly, they can produce deeper and more vivid reds, greens, and blues, and show more shades in between. Deep shadows aren't simply black voids; more details can be seen in the darkness, while the picture stays very dark. Bright shots aren't simply sunny, vivid pictures; fine details in the brightest surfaces remain clear. Vivid objects aren't simply saturated; more shades of colors can be seen." via PC Magazine

Exploring Virtual Reality Display Technology in the Military Industry "The reason why I am reporting this here is the appearance of VR & AR components directly into the military mix, and also the latest technology seen here that is also about to once again cross the divide and make itself felt in the consumer sector. Regarding home grown technology from the defence industry (that we are able to talk about publicly), the big buzz at the show was the Striker II. Developed by BAE Systems, and called by the company most advanced fighter pilot helmet, to evaluate its digital night vision capability and target awareness. This space age Head-Mounted Display (HMD) (the defence sector coining the phrase originally) utilizes cutting-edge tracking system that ensures the pilot’s exact head position and the aircraft computer system are continuously in syn. While the digital night vision is projected into the pilot’s view, along with representations of target and aircraft instrumental data." via Road to VR

How Display Technology Is Going Organic "A third challenge involves cost. OLED displays are made using a fine metal mask to create the pixel pattern. In this approach, a thin sheet of metal with holes in it is placed over the substrate, and the organic molecules travel through the holes before ending up on the substrate. That is cost-effective for small displays, which helps explain why OLEDs have done so well in mobile applications. When the same technology is scaled up for a large display or television, however, drawbacks appear. It becomes difficult to make the masks and to maintain the proper tolerance. Also, during processing, the masks have to be cleaned periodically. What’s more, the mask must be precisely positioned from one pass to another so that the different colors found in each pixel properly align to each other. Partly as a result of such factors, today a large OLED TV can be many times the cost of a similarly sized LCD TV." via Photonics Spectra

How Is Clothing Being Turned into Information Displays? "Researchers from Holst Centre (set up by TNO and imec), imec and CMST, imec’s associated lab at Ghent University, have demonstrated the world’s first stretchable and conformable thin-film transistor (TFT) driven LED display laminated into textiles. This paves the way to wearable displays in clothing providing users with feedback. ...The conformable display is very thin and mechanically stretchable. A fine-grain version of the proven meander interconnect technology was developed by the CMST lab at Ghent University and Holst Centre to link standard (rigid) LEDs into a flexible and stretchable display. The LED displays are fabricated on a polyimide substrate and encapsulated in rubber, allowing the displays to be laminated in to textiles that can be washed." via Solid State Technology

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

NASA’s Avionic Cockpit Display Helps Mitigate Supersonic Booms "While low-boom supersonic aircraft will minimize the intensity and occurrence of sonic booms, atmospheric physics still dictate that shock waves will reach the ground in some form, no matter how well the vehicle is designed. The question is whether the location and strength of these waves can be predicted and, if so, can the information be relayed to the crew in time for them to do something about it?" via Aviation Week

Car makers going big on 3D touch control, says UK sensor firm "The company said it is seeing its QTC force touch sensors being integrated under in-car surfaces such as plastics, rubbers, wood, leather, metals and glass. Neil Jarvie, Peratech sales v-p, says that the capability to incorporate pressure sensing that capacitive touch sensing does not provide is important for Tier 1 automotive companies. The matrix sensors are designed to track multiple touches for position on X and Y axes and independent pressure sensing along the Z-axis. According to Jarvie, this allows designers to reduce button count in the centre stack, steering wheel and other cockpit surfaces." via ElectronicsWeekly

What is the challenge of parasitic extraction for touchscreen designs? "One of the major verification challenges for touchscreens is parasitic extraction. Because a finger or touch tool is essentially a big conductor sitting on top of the screen, a 3D field solver extraction tool is typically required to achieve the desired accuracy necessary to capture the subtle effect at the touch point. However, most field solvers do not have the capacity to evaluate an entire design in a timely manner, making them unacceptable for production design. Capacity in this instance means the ability of the extraction tool to run on big designs to completion. For example, if an extraction tool runs on a design for three days and generates accurate results, it does not suffer from a capacity issue, but it may suffer from a performance issue. If another extraction tool runs on that same design, but never finishes, it has a capacity issue, which means the algorithm inside the tool is not well-suited for large designs. Capacity is simply a metric, like accuracy and performance. With field solvers, capacity is typically an issue because of the resources required to do the extensive computational work. What is needed is an extraction tool that can deliver field solver accuracy with a satisfactory turnaround time for production designs." via EDN

Here's why Apple made the touchscreen stylus that Steve Jobs hated "When Apple marketing chief Phil Schiller announced that the company's stylus for new iPad Pro would be called Pencil, the crowd audibly laughed in unison. On the surface, it was because it played into the stereotype that Apple lays claim to everyday inspirations. But on a deeper level it traces back to former CEO Steve Jobs, who famously said in 2007 at the initial iPhone reveal, "Who wants a stylus? You have to get em', put em' away. You lose them. Yuck." Yet it turns out that eight years later, some people do want a stylus — and they've improved substantially alongside the devices with which they're used. ...Steve Jobs didn't envision the iPhone 1 being a viable tool for graphic designers and illustrators, people who've long used pro-grade products from companies like Wacom. But now, the Pencil is an option for those who want to use the iPad Pro as if it were a sheet a paper and the stylus as if it were — wait for it — a real pencil. Apple has designed the pen so that it has little to no latency. It can draw thicker lines with applied pressure and orient its toolset to whether you're tilting the pen, for shading, or dragging it along the surface to draw lines or form letters. These selling points make it clear that the Pencil is not designed to help you clean out your inbox." via The Verge

This Head-Up Display Helmet Will Make F-35 Pilots Missile-Slinging Cyborgs "After years of delays and more than $60 billion dropped on development, the jet is finally just about ready, and it’s bringing some pretty slick tech along with it—including a brand new helmet that will let the pilot see through the plane, aim missiles with his eyeballs, and keep an eye on key data no matter where he turns his head. The F-35 Gen III Helmet Mounted Display System, developed by a joint venture led by defense contractor Rockwell Collins, takes the head-up display (HUD) usually projected onto on a piece of glass at the front of the cockpit, and puts it on the helmet. That means the pilot’s always got it in his field of vision, and can see useful data like the horizon, airspeed, altitude, and weapons status wherever he’s looking. More than keeping the pilot’s cranium safe from smacking against the canopy, and mounting stuff like a sun visor and oxygen mask, the Gen III helmet is designed to improve the pilot’s situational awareness. At engagement altitudes of a few thousand feet and speeds of up to Mach 1.6, it’s crucial to know what’s going on ahead of, to the side of, above, and below and the jet." via Wired

Virtual Reality's Pursuit Of Presence and True Immersion "Depending on where an object lies in our visual periphery, our sight of it may be less sensitive to fine detail (or high-resolution), but more aware of latency and rapid changes. Research into VR must account for both this requirement of highly precise rendering in particular regions of the visual spectrum and the low-latency necessities of generating the entire view-scape. What does this all mean? Well, an immersive display capable of outputting a human eye’s expected resolution of 60 ppd requires an incredible 7.2K of horizontal and 8.1K of vertical pixels per eye — or 116.4 million pixels (megapixels) total or 16k resolution! Current displays, such as the latest home entertainment systems and VR technology, are capable of up to “only” 4K resolutions. As VR display research advances, though, 16K per-eye resolutions will likely be achievable within a few years. But what about latency? After all, low latency is absolutely essential for true immersion, and arguably is the most important performance metric for VR." via TechCrunch

New system for deposition of OLED barrier films "AIXTRON SE a worldwide leading provider of deposition equipment to the semiconductor industry, has sold the first Optacap-200 encapsulation tool to a major Asian display manufacturer. The standalone R&D system that handles substrate sizes of 200 mm x 200 mm was ordered in the third quarter 2015 and is scheduled for delivery in the first quarter 2016. The innovative Optacap plasma enhanced chemical vapor deposition (PECVD) technology enables the deposition of highly flexible and effective barrier films for thin-film encapsulation of OLED display, OLED lighting, organic photovoltaic and flexible electronic devices." via Printed Electronics World

Introducing an Automultiscopic Display "A team of researchers at the USC Institute for Creative Technologies (Playa Vista, CA) have developed a system that captures videos in a unique way and then presents full sized images of people on a so-called 'automultiscopic' display. The term automultiscopic is used to define a display that allows multiple users to view 3D content simultaneously, without the need for glasses. A recent publication by the team is entitled 'Creating a life-sized automultiscopic Morgan Spurlock for CNNs "Inside Man."' A copy of this brief article is available on-line and can be found here. The production of an automultiscopic image begins with capturing video of the subject. Done while the subject is uniformly bathed with intensely bright light, the capture is accomplished using 30 Panasonic X900MK 60p consumer cameras spaced over 180°." via DisplayDaily

Projected Capacitive Touch Screen Technology and Borders "The size of a PCAP sensor is directly related to the size of the display active area and the borders needed to have a linearly sensitive, reliable sensor that can be manufactured efficiently. Many different options are available for hosting the conductive traces that make up the bulk of that border, all with their own pros, cons and costs. Ideally, the sensor and the display would have the same active and outer areas, but as display borders get narrower, the touch sensor industry is striving to keep pace. By far the most common type of projected capacitive touch screen traces is the printed metal trace, usually Ag (silver). There are three main methods for creating these traces: printing, laser ablation and sputter deposition. These are listed in increasing trace density and price. The printing option is the cheapest and fastest method, but the traces are limited by the screen or ink deposition resolution." via TouchInternational

What did you think about today's news? Leave a comment here and share your thoughts.

Tuesday
Sep012015

Display Technology News Roundup 9.1.2015

Image via Polyera Wove Band

Polyera's Wearable Flexible Display Can Roll Up "Polyera today introduced the Wove Band—a flexible display that can lay flat or wrap around a wrist, like a 1980s slap bracelet. Ten years in the making, Polyera Digital Fabric Technology and the Wove Band are expected to launch in mid-2016. Free developer units will be available to pre-order in September, before they ship to a select group of artists and developers in December. ...The Wove Band promises "a flexible, low-power touch display," which combines the company's Digital Fabric Technology with electronic ink film, allowing for an always-on display." via PC Magazine

Will the display screen of the future be a sort of 3D aquarium? "The screen of the future is not a flat panel, but rather a sort of aquarium. If you walk around it, from various sides and angles you will see a single luminous image formed inside something resembling an `aquarium,’ as if by cross-sections. Each is visible thanks to liquid crystals activated from a transparent to dissipative state of light by electric voltage (a movie screen sends out a constant stream of light). If all of the cross-sections are on and rendered visible with a frequency of over 25 frames per second, then moving objects can be observed in an `aquarium’ as a single whole. ...Igor Kompanets is head of the opto-electronics division at the Lebedev Physical Institute of the Russian Academy of Sciences, and an honorary director of the Russian branch of the International Society for Information Display (SID)." via Russia Beyond the Headlines

How Is LG Display Spending $8.5 Billion on Next-Gen Display Screen Technology? "LG Display Co., a supplier to Apple Inc., plans to invest about 10 trillion won ($8.5 billion) over the next three years to develop next-generation screens to reverse slowing growth and gain an edge over competitors. LG Display will shift its investment focus to screens powered by tiny organic light-emitting diodes, or OLEDs, the Seoul-based company said in an e-mailed statement Monday. The world’s largest maker of liquid crystal displays is betting on growth in demand for advanced displays, including foldable screens, for wearable devices, cars and televisions." via Bloomberg

AUO and 3M team up to bring quantum dot 4K UHD LCD panels to mass market "AU Optronics Corp., one of the world’s leading makers of LCD panels for various devices, and 3M this week announced a new technology alliance that can dramatically improve quality of TV-sets and displays. The two companies will offer turn-key solutions that will help suppliers of televisions to offer TV-sets with quantum dot (QD) technology that enables wide color gamut and high dynamic range for ultra-high-definition (UHD) 4K TVs. The QD display enhancement technology significantly improves quality of backlighting in LED LCD panels by integrating a special quantum dot enhancement film (QDEF) with trillions of semiconductor nanocrystals into an LCD panel stack. A quantum dot can emit (or, in the case of QDEF, filter) light at a very precise wavelength. The ability to control the spectral output of a quantum dot allows QDEF to create an ideal white backlight, something that allows to display more accurate red, green and blue colours, thus enhancing color gamut." via KitGuru

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Sharp May Consider LCD Joint Venture Rather Than Sale "Sharp Corp. is leaning toward spinning off its liquid-crystal display business into a joint venture with a third party, rather than selling the unit outright, people familiar with the matter said. Innovation Network Corp. of Japan and Hon Hai Precision Industry Co. are the two leading candidates Sharp is considering for partnership, according to the people, who asked not to be named because the discussions are private. ...If Innovation Network, also known as INCJ, injects capital into the joint venture, it may combine the business with Japan Display Inc., a competitor the Japanese state-backed fund already supports, according to two of the people. There could be antitrust concerns in combining two operations." via Bloomberg

Finally, A Convincing 3D Display That Doesn't Require Glasses "At this year’s SIGGRAPH, a group of researchers presented a display that creates a 3D human in stunning detail using a cluster of 216 projectors. A team from USC’s Institute for Creative Technologies has built an automultiscopic 3D display which essentially makes a 3D model of the person with video. After capturing video of a person using 30 cameras in intensely bright light, the images are divided among the 216 projectors. The projectors are arranged in a semicircle around a large screen, so as viewers walk around the screen their eyes smoothly transition from one projection to the next. The result is feeling as if you can see crystal-clear depth and detail." via Gizmodo

Merck unveils future display technologies at 2015 Touch Taiwan "Pursuing the goal of "The Perfect Pixel" material innovation, Merck has teamed up with local panel makers as a key strategic partner and to provide them with the crucial materials for creating better visual experiences and enjoyment. ...As panel resolution increases, four times of pixels are required to put into the same area, so the number of metal wires that connect pixels is also on the rise. Therefore, it's important to reduce the effects of cross talk that are caused by the increase of wiring density. Merck has acquired AZ Electronic Materials, which is a leading company that specializes in providing high tech materials that enables a high precision manufacturing process for LCD's. Merck's product line is now expanded to include high contrast photoresist that can be used to accurately align the sophisticated wires in lithography process. Also, by using ultralow-K SOG (Spin on Glass) material, light transmission can be effectively increased to improve the yield rate for 4K 2Kpanel manufacturing and cost control." via DigiTimes

Why are LEDs for wearable devices due for a comeback? "OLED devices, especially those on flexible polymer substrates, are thin enough, but suffer from lifetime problems. Neither is as power efficient as would be desired. The solution is to develop and enable a new class of display that uses micro inorganic light emitting diodes (μLEDs) that will be more energy efficient, longer lifetime, and thinner than incumbent display technologies. These won’t be limited to monochrome red, but be full color, sporting a color gamut wider than LCD and rivaling OLED. Given that the number of color primaries is only limited by the number of source wafers, these displays may be multiprimary for greater energy efficiency and wider color gamut. They will be very high resolution, certainly greater than 600ppi. Just as with LCD and OLED displays today, they will be subpixel rendered for better performance and lower manufacturing cost." via DisplayDaily

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Virtual Reality project is like The Matrix built inside a holodeck "The University of Michigan has hosted a 10-foot-by-10-foot virtual reality testing environment covered with projection walls since 1997. Now they’ve reprogrammed the system to be run by the powerful Unreal Engine videogame software, which can be used to create extremely detailed and ambitious environments. Dubbed MIDEN (Michigan Immersive Digital Experience Nexus), the virtual-reality system uses stereoscopic glasses and a gaming controller for motion and perspective. By using the controller, users can manipulate objects in the environment, and potentially move through a virtual world of limitless size. The Unreal Engine allows for the creation of realistic water, foliage or glass, and effects like fire and transitions in the time of day — which go a long way in building the illusion. (Video)" via blastr

How Kyocera is giving touchscreens a real button feeling "Kyocera has introduced a newly patented technology in Europe for real touch feeling and force feedback in display screens. The development of a real button sensation is expected to create a new type of user interface. It can be used in touch panel or touch pad products for a broad range of applications such as automotive and industrial equipment or in the field of information and communications. ...The technical principle of creating this sensation works as follows: the button impression is composed of pressure feeling (a button response feeling with micro-movement only), which is perceived by the finger while pushing the button at first, and a subsequent stroke-down impression (a button response feeling caused by movement). Kyocera’s new technology called ‘Haptivity’ evokes these impulses towards the nerve of the finger and creates the sensation of a real button operation by both pressure detection and specified frequency vibration output features. (Ex. Patent No. EP2461233B1 effective until 2030)." via Electropages

McDonald’s introduces touchscreen ordering and customisation in the UK "Customers visiting the fast food giant can now place and pay for their orders using the screens, which also offer options to help them get their food just the way they like it. ...McDonald’s is looking to an improved customer experience to fight off competition from rival burger chains in the UK including Byron and Five Guys. It recently trialled a table service to provide a more personal experience in Manchester, which also incorporated the placing of orders through digital kiosks." via Business Reporter

Microsoft's prototype keyboard cover has an e-ink touchscreen "Looking to further bridge the gap between slate and laptop, Microsoft Applied Sciences built a prototype device it calls the DisplayCover: a keyboard cover that houses an e-ink touchscreen display. The 1,280 x 305 resolution panel not only provides access to app shortcuts, but it can also handle touch gestures for navigation and accept stylus input. The stylus feature seems to make things like signing documents and scribbling notes a breeze, based on the demo video. (Video)" via Engadget

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

How Is LG Making the Capital Investment Gamble? "With falling TV panel demand and high fixed operation cost, Sharp accumulated drastic losses, pushing the company to the edge of bankruptcy. For the first time a larger substrate size did not automatically translate into business success. A valuable reminder that it is not only important what you do, but also when you do it. Today, several companies are talking about Gen 10 and Gen 10.5 LCD Fabs to gain a cost advantage in the display panel business. So it came as somewhat of a surprise when Digitimes quoted the Korea Money Today newspaper as a source saying that LG is thinking about the investment in a Gen 9 LCD Fab instead of a Gen 10, to compete with Chinese and Japanese competitors. While there is no way to verify this report, as LG is just not commenting on this speculation, it may just be an idea from the analyst instead of actual LG insider information. Or is it actually possible that LG would do such a thing?" via DisplayDaily

Why does digital signage have friction in buying and supply? "The goals of different business units that may be involved add complexity. Purchasing wants to minimize the capital outlay, information technologies want a solution that is RAS-able (reliable, available and scalable), facilities seek digital signage that will deliver improved performance of the location and a better visitor experience, and marketing wants better branding and merchandising at lower ongoing communications cost. The biases of the department that is taking the lead on the project can minimize the goals of other stakeholders, and coordinating this range of interests can be like herding cats. The sourcing agent (IT, facilities, purchasing, etc.) often see their role as concluding at vendor selection and contracting, whereas the end-user department (e.g., marketing, human resources, student communications) must live with the solution and vendor that are selected. Digital signage can deliver a wide range of benefits, but too often end-users do themselves a disservice in not defining the benefits they seek, in particular over the life of the investment where their growing application of the media can change as they become more familiar with its use." via Digital Signage Today

Planar Acquired by Leyard "Portland, OR-based Planar was to be acquired by a U.S. affiliate of the Chinese company Leyard (for a purchase price of $6.58 per share, or approximately $156.8 million). ...The direct-view LED video market is rife with competition from low-cost companies mostly based in Shenzhen, China. As I wrote earlier this year after the news broke of Samsung acquiring Yesco, smaller local companies such as YESCO have been particularly hit by such competition, while premium brands such as Daktronics, Barco, and Mitsubishi have been able to maintain revenues due to their reputation in the market. Samsung provides YESCO and its customers the credibility of a global multinational brand, after that acquisition. And now Planar, a sophisticated engineering company with well above average 4K LCD flat panels and other digital signage offerings, should do well with the deeper pockets and R&D of a larger company like Leyard– and the “synergies” we hear about in every acquisition press release are real here, and should make for intriguing developments from this new pacific rim entity." via AVNetwork

How Does UX Design for Very Large Touchscreens Differ from Mobile Screens? "Dorothy Shamonsky shares other findings based on her research experience with very large touch screens, "A large touchscreen can look beautiful and is enjoyable to interact with! At the same time, a large display will magnify a poor user experience. If you don’t like the way an interface looks at a small size, on a large screen it will be more offensive. Everything about the user experience is exaggerated at the large size—the beauty and the fun, as well as the effort and the frustration. Attempting to use touch on sites and apps that are were not designed for touch is, if nothing else, boring. Creating compelling touch interaction requires an understanding of the familiar gestures and how to use them appropriately. Use simple and clear visual and aural feedback to create a sense of tactile feedback. Tune into the joy of a good user experience."" via Nielsen Norman Group

What did you think about today's news? Leave a comment here and share your thoughts.

Friday
Aug142015

Display Industry Technology News Roundup 8.14.2015

Image via Google / Project Jacquard

Google and Levi's Team Up For Touch-Screen Enabled Clothing "Google and Levi Strauss have teamed up for a new project called Project Jacquard, named after a Frenchman who has invented a type of loom. This new initiative will be designed and spearheaded by a small Google team called Advanced Technology and Projects (ATAP) and is taking touch screen to another level by developing touch screen enabled clothes. The touch controls will weave "interactive" textiles right into your clothes, giving any garment the ability to communicate with other gadgets and operate just like a touch screen device. “We are enabling interactive textiles,” the ATAP's own Emre Karagozler stated as part of their announcement. “We do it by weaving conductive threads into fabric.” “It is stretchable; it is washable,” he added. “It is just like normal fabric.”" via Shalom Life

How recycling LCD screens could solve rare metal shortage "The team from the School of Environment of Tsinghua University in Beijing tested 18 methods for removing indium from discarded LCD screens and displays. The methods involved crushing and grinding the LCD glass into particles less than 75 micrometres in size. The researchers then soaked the particles in a sulphuric acid solution at a temperature of 50 ºC. ...With the electronics industry selling millions of gadgets equipped with LCD screens, displays and panels of various sizes every year, there could easily be supply problems within the next 20 years if a sustainable way of indium recycling is not developed, some estimates suggest." via E&T Magazine

LG Display shows off press-on 'wallpaper' TV under 1mm thick "The 55-inch OLED (organic light-emitting diode) display weighs 1.9 kilograms and is less than a millimeter thick. Thanks to a magnetic mat that sits behind it on the wall, the TV can be stuck to a wall. To remove the display from the wall, you peel the screen off the mat. The unveiling was part of a broader announcement by LG Display to showcase its plans for the future. The company said its display strategy will center on OLED technology." via CNET

"Always-on" Color Memory LCD is Ideal Graphic Display for Wearable Products "Sharp Microelectronics of the Americas (SMA) has unveiled its 1.33-inch (diagonal) Color Memory LCD graphics display. The 8-color LCD module has ultra-low power consumption, enabling longer time between recharges for small-display products with a battery. It also enables designers to meet the growing demand for "always-on" devices – e.g., products such as smartwatches that show a full array of data at a glance without need to "fire-up" the device. The high-resolution display (LS013B7DH06) delivers smooth graphics and simple video capability, thus showcasing richer content than many cholesteric, electrophoretic, and other bi-stable, "e-ink" type display solutions – all with lower energy requirements. Transmissivity allows addition of a backlight for visibility in low ambient light." via PR Newswire

Sharp to Explore Options for LCD Panel Business "Sharp Corp. said it would seek external help to prop up its LCD panel-making business and plans to quit selling televisions in the U.S. and much of the rest of North and South America, as the electronics company steps up its turnaround plan aimed at ending steep losses. ...In withdrawing from the TV business in the Americas, Sharp will sell much of its North and South America TV operations, with the exception of Brazil, to Hisense Co., a Chinese manufacturer. Sharp had a 4.6% share in the North America TV market, far behind market leader Samsung’s 35.1%, according to research company IHS." via WSJ

Samsung creates "transparent" truck display "When driving behind big semi-trailers, people regularly take risks overtaking them because they often have to first move out from behind the truck to see if the road ahead is clear before passing. This is particularly dangerous on single-lane highways because such a maneuver can mean driving into the path of oncoming traffic. Now Samsung Electronics has come up with a way to help reduce this problem by mounting cameras on the front of a truck and large screens on the rear to display to following drivers a clear view of the road ahead. Like the See-Through System we wrote about in 2013, the prototype video system on "Safety Truck" comprises a front-mounted camera to capture view of the road ahead of the truck. Rather than wirelessly send a live feed to a transparent LCD screen installed in a trailing driver's car, Samsung's solution transmits a continuous view of the road in front of the truck to exterior monitors mounted on the rear. (Video)" via Gizmag

Shape-shifting display projects objects out of TV screens using ultrasound levitation "The shape-changing display breakthrough is part of the Generic, Highly-Organic Shape-Changing Interfaces (GHOST) project and is the product of three years of research by the University of Copenhagen, the University of Bristol, Lancaster University and Eindhoven University of Technology. As glass cannot be bent as it will break, the researchers instead made a flatscreen display out of Lycra, which can be deformed at will. When a finger presses in on the display, a camera captures 3D depth data of the position and pressure of the finger on the screen. The researchers have developed computer algorithms that are able to detect and understand the depth information from the screens when a hand pulls at the display, as opposed to a glass screen display like an iPad, which has technology that only detects the limited area of a fingertip pressing on the glass in 2D." via International Business Times

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Researchers develop the first skin-like flexible display "A research team from the University of Central Florida, led by Professor Debashis Chanda, has developed the first-ever skin-like colour display, which is thin and flexible enough to be used alongside fabrics. The research team’s technique could open the door to thin, flexible, full-color displays that could be built into plastics and synthetic fabrics. The technology is only a few micrometres (um) thick. That is considerably smaller than a human hair, which is typically around 0.1mm thick." via Android Authority

Samsung Display Introduces First Mirror and Transparent OLED Display Panels "The new Samsung Display OLED panel technology provides a digital viewing platform for making the consumer purchasing experience more visually engaging. When Samsung’s OLED display technology is integrated with Intel® Real Sense™ technology, a visually compelling, interactive closet or “self-modeling” wardrobe is created that can enable consumers to virtually “see” clothes or other retail items from an extremely realistic, customized perspective. Together, the two technologies create a “virtual fitting room” that will be used to help consumers vividly see themselves wearing clothing apparel, shoes or jewelry that they might wish to buy. Once retailers like Chow Sang Sang adopt the combined Samsung-Intel “personalization” virtual imaging solution, consumers will be able to go to leading stores around the world to see retail items in ways that will greatly enhance point-of-purchase shopping as we know it today." via BusinessWire

How the world’s first white laser could revolutionize lighting and display tech "Incandescent bulbs have given way to CFL and LEDs, but these lighting technologies may be destined for extinction as well. A team of scientists at Arizona State University have developed a laser that can produce pure white light that is brighter and more efficient than even the best LEDs. Technically, the laser itself isn’t white from the start, but the clever use of nanomaterials allows three colored beams to become one white beam. Lasers have always had appeal for lighting technology as they’re very bright, work over long distances, and have high efficiency. The problem has always been that lasers can’t be white. This work builds on a laser created in 2011 at Sandia National Laboratories. However, that was merely a proof of concept, not a functional device. The ASU team’s white laser produces enough light that it’s visible to the human eye. That’s a step in the right direction." via ExtremeTech

E-paper display gives payment cards a changing security code "Using payment cards with an embedded chip makes payments more secure in physical stores, but it's still relatively easy for criminals to copy card details and use them online. Oberthur's Motion Code technology replaces the printed 3-digit CVV (Card Verification Value) code, usually found on the back of the card, with a small screen, where the code changes periodically. Today, any criminal who has seen a card or overheard the owner dictating the CVV code can make an unauthorized purchase online or by phone. With Motion Code, because the CVV changes from time to time, the time a fraudster has to act is reduced." via Computerworld

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

LG scales up In-Cell technology for thinner touchscreen laptop displays "With the launch of Windows 8 and its awful Start screen interface, we also got an influx of touch-enabled laptops and convertibles. It was a nice feature you could happily ignore if you so wished, but it does add a little extra bulk to the display because a touchscreen requires a touch layer in the panel. However, LG is about to fix that by scaling up the touchscreen tech used in its smartphones. The technology in question is called Advanced In-Cell Touch (AIT). What it does is remove the need for a separate touch layer by integrating the touch sensor directly into the LCD panel. You no longer need to add the touch panel on top of the LCD, it instead comes as standard and reduces the thickness (by 1mm) and weight (by 200 grams) of the finished display." via Geek

Apple Watch Sapphire vs Glass Display "The world’s best [and most expensive] watches all have a sapphire crystal because sapphire is incredibly hard, making them extremely scratch resistant and almost scratch proof under normal use. But sapphire is fairly expensive, so most watches instead have a glass crystal, which isn’t as hard or scratch resistant as sapphire, but still holds up pretty well. But is there a visual difference between a watch that uses sapphire versus glass? If you were to hold up two identical watches side-by-side, the one with a glass crystal would be about 20 percent brighter than the one with sapphire (due to fundamental principles of optics that reduce its light transmission), so it appears somewhat darker and duller, particularly because the light has to pass through the crystal twice. There are some new upcoming advanced technologies that can make significant improvements on this issue that we’ll mention below. The above discussion is for traditional watches, which work by reflecting ambient light off the watch face that lies below the crystal. On the other hand, the visual consequences from using sapphire and glass are considerably greater when they are used on displays, including smartphones and smart watches, because minimizing screen reflections is especially important for displays, and sapphire has almost double (191%) the Reflectance of glass, which we consider next…" via DisplayMate

Researchers' 'Fairy Lights' Promise Floating, Touchable Laser Displays "As the researchers explain in their paper, an earlier incarnation of the technology relied on a nanosecond laser to create bursts of plasma that, when fired in rapid succession, can effectively act as a floating display. The problem, as IEEE Spectrum notes, is that while those plasma bursts can deliver tactile feedback, they can also burn you. The latest version developed by the researchers, on the other hand, uses a femtosecond laser to create a similar type of floating plasma display that's safe to touch. And while it won't burn you, the plasma will apparently still generate "shock waves" that will let you feel an "impulse on the finger as if the light has physical substance."" via Tech Times

Could this could be the big OLED breakthrough we've been waiting for? "But a joint venture by Fujifilm and nano-electronics research institute, imec, might well have turned up a more cost-effective method of producing high-resolution, big-screen OLED displays. This pairing produced photoresist technology for organic semiconductors back in 2013 and they have recently demoed full-colour OLEDs using that photoresist tech. It's a different method of producing OLED displays compared with Samsung's Full Metal Masking (FMM) tech and LG's white OLED (WOLED) with colour filters. The research is most encouraging though because it uses an OLED patterning setup that uses standard lithography tools in its manufacture." via TechRadar

Facebook’s Oculus to Pay About $60 Million for Gesture-Control Firm Pebbles "Pebbles has recently integrated its technology into the virtual-reality headset developed by Facebook’s Oculus VR, enabling users to interact with the device via hand and finger gestures. Unlike competing gesture-identification technologies, Pebbles’ enables users to see images of their own arms and hands in their virtual-reality display. In some other technologies, users can’t “see” their bodies, or only see generic digitally-generated versions. Pebbles’ technology can show unique features like clothing, scars or items held in one’s hand." via WSJ

Apple might be bringing fighter-jet technology to car windshields "The world’s most valuable company is “very likely” working on a 27- to 50-inch head-up display, a technology most famously used by jet pilots, that could project vivid icons and information for drivers while on the road, a tech analyst with Global Equities Research said Thursday morning. The curved-glass screen could also be wired with sensors and “may be completely gesture-controlled,” a stealth project that analyst Trip Chowdhry said could be Apple’s “next generation” device, after gadgets such as the iPhone, iPad and Apple Watch." via Washington Post

Switchable holographic pixel elements for 3D displays "Many so-called 3D display technologies rely on optical tricks, such as stereoscopy and reflective prisms, to give the illusion of depth. However, holograms can record, and display, all the information of the original light field using optical interference so that there is no visible difference between the optical information in the displayed image and the real-world scene. Hence the display is a true 3D view into the world (see Figure 1).1 Such an ideal 3D holographic display requires an array of multifunctional, highly dense pixels working in unison to encode phase, amplitude, wavelength, and polarization information yet with dimensions similar to visible wavelengths." via SPIE

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

Are quantum dots ‘ready for prime time’? Analyst says yes "Until OLEDs are ready, says Yole, “QD-LCD technology will have a unique window of opportunity to try to close enough of the performance gap such that the majority of consumers will not be able to perceive the difference between the two technologies so price would become the driving factor in the purchasing decision.” Under this scenario, the analyst believes that QD-LCD could establish itself as the dominant technology while struggling OLEDs “would be cornered into the high end of the market.” Yole acknowledges that OLED-based displays potentially offer more opportunities for differentiation but the analyst notes, “OLED proponents need to invest massively and still have to resolve manufacturing yield issues. For tier-2 LCD panel makers who cannot invest in OLED, Quantum Dots offer an opportunity to boost LCD performance without imposing additional CAPEX on their fabs.” At this year’s Consumer Electronics show, as optics.org reported, no fewer than seven leading TV OEMs including Samsung and LG demonstrated QD-LCD TVs." via Optics.org

The impact of consumer demand for cutting-edge display technology on the gases market "Currently about 20% of smartphones – the ones with lower resolution displays – use a-Si display process. Higher resolution devices and new effects such as curved displays require higher performance transistors and improvements in electron mobility. This can be achieved by switching from amorphous silicon (a-Si) transistors to low temperature polysilicon (LTPS) or metal oxide (MO), also known as transparent amorphous oxide semiconductor (TAOS). LTPS is used in about 44% of high-end LCD smart- phone displays as it has the highest performance. Due to its higher costs and scalability limitations, LTPS is less suited for large screen displays. Small displays with very high pixel resolution are produced with LTPS. High-definition large displays can be made using MO. Metal oxide semiconductors can remain in an active state longer than traditional LCD and can cut power consumption by up to 90%, which is a huge benefit." via Solid State Technology

Huge 8K panels shipping from China this year "The new screens are rocking Advanced Super Dimension Shift (ADSDS) panel technology, which sounds like some serious quantum physics kinda extra-dimensional voodoo, but is actually another liquid crystal tech allowing the wee molecules to be rotated in a more efficient way. The advantages of this technology is it's capable of dealing with incredibly high resolutions (lucky as we're talking about 7680x4320 here…) with low levels of power consumption. Another bonus of ADSDS - and why it's part of these big screens - is that it has a seriously wide viewing angle of 178º. OLED on the other hand is still sat at a slightly more limited 160º viewing angle." via TechRadar

Laser-projected mouse melds trackpad, touchscreen "ODiN is the world's first laser projection mouse, claims its creator, Taiwanese company Serafim Technologies. The device was shown off on Monday, a day before the Computex trade show in Taipei. Users who buy the product will receive a small projector that can sit on top of a table, and connects to a PC via its USB port. It works by displaying a virtual trackpad on a hard surface like a table. For users, this means they'll essentially see a small box, made out of red light, with the right and left click buttons projected at the top of the trackpad. To read the gestures, the projector has built-in sensors that can track a user's finger movements over the trackpad. The company created the product as a way to meld mouse and touchscreen functions, said Serafim's CEO GZ Chen." via Computerworld

Austrian Company Invents a Touch Screen for the Visually Impaired "Here's the gist of it: the tablet is just like an e-reader but instead of a traditional LCD display, it has one that's made out of a smart liquid that forms bubbles on the surface. When the software recognizes text from either a USB drive or webpage, it converts them into Braille letters. "We call the materials 'tixels' from 'tactile pixels' because we do not use any mechanical elements to trigger the dots," Kristina Tsvetanova, Blitab's founder, says. (Video)" via Fast Company

Everything you can do with the Force Touch Display on Apple Watch "Force Touch adds a new dimension to the watch’s user interface, a necessary one given the device’s small screen. The Retina display’s electrodes can sense when you’re tapping the screen to select an option and when you’re forcefully pressing down to bring up a secondary menu. Apple calls Force Touch the “most significant new sensing capability since Multi-Touch,” the touchscreen tech that transformed the way we interact with phones (and everything else). Apple Watch and the trackpads on the new 12-inch MacBook and revamped 13-inch Retina MacBook Pro have the new Force Touch gesture baked in, and Apple is reportedly planning to add it to the next generation of iPhones." via Macworld

Google's new finger control technology is straight out of a science fiction movie "Google showcased an early prototype of the Soli technology on stage with impressive results. Google showed how precise, fine motor skills, such as pinching the thumb and index finger, or rubbing them together at different speeds, could be used to control all sorts of things without actually touching them. In one demo, the founder of Google's Project Soli, Ivan Poupyrev, kicked a virtual soccer ball by flicking at the screen. In another, he changed the hours on a clock by turning an imaginary dial with his fingers, and then changed the minutes by raising his hands further away from the screen and doing it again." via Business Insider

Most Colorful Color Display Yet Eliminates Need For Backlight "The new display is the latest version of Mirasol, an established commercial product from Qualcomm. Instead of emitting their own light, the Mirasol displays basically use a sophisticated mirror to selectively reflect light from the environment. Researchers report in a paper published in the journal Optica that they have solved many of the biggest problems that the technology has encountered so far, decreasing the display's power demands and making it easy on the eyes in bright environments. "No more squinting at a hard-to-read display outdoors where we spend much of our time," lead author John Hong, a researcher with Qualcomm MEMS Technologies Inc., said in a statement. "We ultimately hope to create a paper-like viewing experience, which is probably the best display experience that one can expect, with only the light behind you shining on the page."" via Tech Times

Nanostructure design enables pixels to produce two different colors "The main challenge to overcome was the mixing of colors between polarizations, a phenomenon known as cross-talk. Goh and Yang trialed two aluminum nanostructures as pixel arrays: ellipses and two squares separated by a very small space (known as coupled nanosquare dimers). Each pixel arrangement had its own pros and cons. While the ellipses offered a broader color range and were easier to pattern than the nanosquare dimers, they also exhibited a slightly higher cross-talk. In contrast, the coupled nanosquare dimers had a lower cross-talk but suffered from a very narrow color range. Because of their lower cross-talk, the coupled nanosquare dimers were deemed better candidates for encoding two overlaid images on the same area that could be viewed by using different incident polarizations." via Phys.org

The Days of Squinting at Laptops in the Sun Are Almost Over "It’s a relatively new phenomenon. Back in the day—before 2006, according to this fine historical document—laptops had those squishy LCD screens that would leave psychedelic trails when you’d run your finger over them. Beyond that trippy side effect, the screens had one big benefit: Matte that were seemingly resistant to glare. Those days are gone. Pick up any laptop and odds are it’s got a glossy screen. Apple dropped the matte screen option from the MacBook Pro in 2013, and people were none too pleased. But according to Dr. Raymond Soneira, founder and president of display-testing and -calibration company DisplayMate Technologies, matte screens have their own problems." via Wired

Fiber-like light-emitting diodes for wearable displays "Professor Kyung-Cheol Choi and his research team from the School of Electrical Engineering at KAIST have developed fiber-like light-emitting diodes (LEDs), which can be applied in wearable displays. The research findings were published online in the July 14th issue of Advanced Electronic Materials. Traditional wearable displays were manufactured on a hard substrate, which was later attached to the surface of clothes. This technique had limited applications for wearable displays because they were inflexible and ignored the characteristics of fabric. To solve this problem, the research team discarded the notion of creating light-emitting diode displays on a plane. Instead, they focused on fibers, a component of fabrics, and developed a fiber-like LED that shared the characteristics of both fabrics and displays." via Printed Electronics World

Forever 21's 'Thread Screen' displays Instagram pics using fabric "Most companies seek out the latest displays for high-tech billboards, but Forever 21 has decided to take a different route for this particular Instagram project. For the past year-and-a-half, the folks at connected hardware maker Breakfast New York have been building a "Thread Screen" for the company. It's called that, because well, it's literally a screen made of 6,400 mechanical spools of multicolored threaded fabric. Those spools have five-and-a-half feet of fabric each, divided into 36 colors that transition every inch-and-a-half. They move like a conveyor belt, stopping at the right hue based on what picture they're displaying -- an infrared even scans the finished product to make sure each spool is displaying the correct color." via Engadget

What did you think about today's news? Leave a comment here and share your thoughts.

Sunday
May032015

Display Industry Technology News Roundup 5.3.2015

Image via Apple Watch

How does Apple's Force Touch enhance the touchscreen experience? "On March 9, Apple announced the Apple Watch and new MacBook at its Spring Forward event. The company also acclaimed its Force Touch (with Taptic Engine) as a new concept in these products. Apple previously seemed more interested in pressure-sensing technology, as it applied for a stylus use patent. However, tap-sensing replaced pressure-sensing. Tap-sensing is limited in pressure detection, and its sensing level is not as sophisticated as pressure-sensing technology. ...Force Touch is more of a marketing term than a specific technology. Apple will likely adopt the most appropriate tap-sensing technology depending on the product. For example, the company already indicated that touch screens are not suitable for clam-shell notebook form factors. Still, Apple will continue to improve its user interface. In addition to the new butterfly mechanism replacing the scissor-like keyboard, Force Touch replaces the diving board design to make its trackpad better." via ECN Magazine

Sharp may spin off LCD unit "Loss-making Japanese electronics maker Sharp Corp (6753.T) may spin off its LCD panel business and seek funding for it from the government-backed Innovation Network Corporation of Japan (INCJ), a source familiar with the plan said on Sunday. The Nikkei business daily earlier reported that the LCD unit, which supplies displays to smartphone and tablet manufacturers, will be spun off in the current fiscal year and that INCJ could invest 100 billion yen in the new entity." via Reuters

How refrigerator LCD screens are driving consumers to drink "The latest digital screen innovation for hospitality businesses is a refreshing change: pub refrigerators with transparent LCD displays built in. Heineken has ordered 200 of Focal Media’s new Damoc Cooler Displays for UK and Ireland locations serving its products, hoping to raise its beer brand’s profile and develop sales. Irish firm Focal Media creates content, digitising conventional advertising where necessary to tie in with events featured at the venues – particularly Heineken-sponsored sporting fixtures such as Champions League and European Cup rugby, which can be big attractions for pubs that show them on TV. Content also includes promotional videos and social media updates." via Screenmedia Magazine

Researchers developing LCD shutters that go from transparent to a new scene "A group of researchers at Pusan National University in South Korea are developing LCD shutters that can be either transparent — allowing you to see your neighborhood — or opaque — giving you views of anything you choose to put on the screen. While not a completely new idea, Tae-Hoon Yoon and his group have a new design that could eliminate some of the problems associated with making a transparent display out of OLEDs. "The transparent part is continuously open to the background," Yoon told AIP Publishing, which published his work in AIP Advances. "As a result, they exhibit poor visibility." Instead, the group’s idea involves a polymer network of liquid crystal cells that don’t absorb light when the shutter is "off," making the material transparent. To make the shutter opaque and ready to project an image, you supply electricity, letting special dichroic dyes absorb the light reflected by the LCDs." via Digital Trends

Shape-changing display could spell the end for the 2D graph "Researchers have developed a 3D prototype display which brings data to life in just this way sounding the death knell for the two dimensional bar chart. Human Computer Interaction specialists at Lancaster University have built a device which translates data into a three dimensional display. The interactive grid of 100 moving columns enables people to understand and interpret data at a glance. People can also physically interact with data points by touching, selecting and swiping through them to hide, filter and compare sets of data easily. The 3D display is radically different to interacting with data on a flat screen. A month's sales figures for example spring to life and take on a 'shape' in front of you, numbers become 'things', trends become gradients which you can reach out and touch." via Phys.org

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Graphene produces a working 3D holographic display "The graphene-enabled display created by a team of researchers from Griffith University and Swinburne University of Technology is based on Dennis Gabor's holographic method, which was developed in the 1940s and won Gabor the Nobel Prize in Physics in 1971. The team has created a high-definition 3D holographic display with a wide viewing angle of up to 52 degrees, based on a digital holographic screen composed of small pixels that bend the light. ...To create the hologram, graphene oxide (a form of graphene mixed with oxygen) is treated with a process called photoreduction, using a rapidly pulsed laser to heat the graphene oxide. This creates the pixel that is capable of bending the light to produce a holographic image. This, the team says, could one day revolutionise displays -- with the most obvious implications in mobile technology and wearable technology. It could also be used for holographic anti-counterfeit tags, security labels, and personal identification." via CNET

Refurbished Avionic Display Panel Connectivity "As part of our continuing series on aircraft refurbs, we’ll focus on a specific avionics upgrade this month—the wireless interface of a portable device (tablet or cell phone) running a flight planning app with IFR-certified, panel-mounted avionics. If you’re doing an avionics upgrade as part of a refurb, we think wireless avionics integration makes sense, especially as the cost may be as low as $1,000 plus installation on top of what you may already be doing. We’ll look at the underlying concept and outline what’s available from the two main players, Aspen and Garmin. We’ll also tell you up front that while Aspen was the first to deliver, its capabilities are limited, and Garmin’s offering is less expensive and more able." via AVweb

Should outdoor digital signage be enclosed? "As enjoyable as a bright sunny day is, it can wreak havoc on an LCD display. There are two main concerns, the first of which is brightness. An average brightness rating for a commercial LCD screen is usually somewhere about 500 nits, which is fine for indoor environments; however, put that screen in sunlight and it will be very difficult to view. With the increased demands on display manufacturers for products to be placed outdoors, we are now seeing displays made for this purpose with brightness ratings of 2,000 nits and higher. The second major concern is that many LCD panels, when exposed to direct sunlight, can become unstable and the image can turn black. In most cases this is temporary, although at a minimum it will cause a disruption to the messaging on the screen. Thankfully, we are starting to see manufacturers produce products that are designed to be viewed in direct sunlight. As you can see, there are several factors that need to be addressed when end-users are looking to expand their digital messaging beyond the inside of their store. " via Digital Signage Today

How to Use Imaging Colorimeters for Automated Visual Inspection of Flat Panel Displays "The use of imaging colorimeter systems and analytical software to assess display brightness and color uniformity, contrast, and to identify defects in Flat Panel Displays (FPDs) is well established. A fundamental difference between imaging colorimetry and traditional machine vision is imaging colorimetry's accuracy in matching human visual perception for light and color uniformity. This white paper describes how imaging colorimetry can be used in a fully-automated testing system to identify and quantify defects in high-speed, high-volume production environments." via Quality Magazine

Which Apple Watch Display Is the Best? "DisplayMate has taken a close look at the OLED screen in the smartwatch, and it notes that sapphire carries its share of drawbacks over the toughened glass in the Watch Sport. While you're still getting colorful, sharp visuals, the higher-end Watch's sapphire reflects almost twice as much light and washes out the picture in very bright conditions. And no, Apple can't use an anti-glare coating to fix this -- that would scratch easily, which misses the whole point of sapphire." via Engadet

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Could butterfly wings could reduce display screen reflections? "Materials such as glass always reflect part of the incident light, making display screens hard to use in sunlight, but the glasswing butterfly hardly reflects any light in spite of its transparent wings. Researchers at the Karlsruhe Institute of Technology (KIT) in Germany have found that irregular nanostructures on the surface of the butterfly wing cause the low reflectivity and hope that a synthetic version of the structure could be used for lenses or mobile phone displays." via E&T Magazine

How will new electronic paper make inexpensive electronic displays? "Researchers from the University of Tokyo have revamped an old e-paper concept to make an inexpensive handwriting-enabled e-paper well suited to large displays like whiteboards. They describe the e-paper in the Journal of Applied Physics ("Electrically and magnetically dual-driven Janus particles for handwriting-enabled electronic paper"). Traditional ink and paper is convenient for both reading and writing. In e-paper development the writing feature has generally lagged behind. Handwriting-enabled displays mainly show up in the inexpensive, but feature-limited realm of children's toys, and in the high-end realm of touch-screen e-readers and smart pens. A team of Japanese researchers has now taken an e-paper technology originally developed in the 1970s and updated it to make a tough and inexpensive display that could be used like a whiteboard when a large writing space is required." via Nanowerk

Why does HDR for 4K Display need end-to-end thinking? "According to Mark Horton, strategic product manager, encoding portfolio at Ericsson Television, "There is a big push back happening against phase 1 (4K resolution). There is little consumer benefit of Phase 1 at sets below 55 inches and they (broadcasters and service providers) think the extra bandwidth doesn’t justify the consumer benefits". These comments were some that he made at this week’s DVB World in Copenhagen. It’s for this reason, according to Horton, that many broadcasters and media companies think HDR is the much more worthwhile investment and that it can create improved results for consumers simply by being applied to HD instead of 4K resolution. Horton also claimed that Ericsson is working independently of the various HDR-related proposals being reviewed by ITU, MPEG and other standards bodies. So far Ericsson doesn’t favor any specific proposal but the company’s unique position of being involved in the entire content chain from content acquisition to end-user screen technology is causing Ericsson to worry about HDR-related standards and decisions being reached in isolation from each other in ways that cause harm to the entire HDR content transmission line. HDR content, in other words, needs to be implemented across the board in a uniform way and according to Horton, "We need to understand what the ‘HDR look’ will be for types of content, whether sports or drama, and need end-to-end tests in a real-world situation."" via 4K News

Oppo's bezel-less display technology appears on video "A video from China reveals some of the technology employed by Oppo that gives its newer handsets a look of being bezel-less, when in actuality there is a razor thin border around the glass. A prototype stars in the video and in real-life this technology will be employed on the Oppo R7. The extremely thin handset has been the subject of quite a few leaks. Besides presenting a bezel-less look, the Oppo R7 also could be the thinnest smartphone in the world measuring less than 4.85mm thick." via phoneArena

Google Unveils a Stick That Turns Any Display Into a PC "This is the Asus Chromebit, and according to Sengupta, it will reach the market this summer, priced at less than a hundred dollars. Sengupta is the Google vice president who helps oversee the distribution of Chrome OS, the Google operating system that runs the Chromebit. The device is a bit like the Google Chromecast—the digital stick that plugs into your television and streams video from the internet—but it does more. Google pitches it as something that lets you walk up to any LCD display and instantly transform it into viable computer, whether it’s sitting on a desk in a classroom, mounted on the wall in an office conference room, or hanging above the checkout counter in a retail store or fast food joint. “Think about an internet cafe,” Sengupta says during a gathering at Google’s San Francisco offices. “Think about a school lab.”" via Wired

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

Light-emitting paper acts as a cheap, flexible display "Ludvig Edman and a team of researchers at the Umeå University in Sweden believe they have solved the problem by going back to basics. They asked the question: "how do you make a display as flexible as a sheet of paper?" And the obvious answer they came back with was: "by using a sheet of paper." What Edman has done is to develop a spray-on solution which allows a sheet of paper to be turned into a usable display. Six layers are sprayed on to the sheet. The first layer is an adhesive allowing the rest of the layers to stick to the paper. Next, four layers form the actual display, allowing electricity to flow across the paper sheet and be turned into light. The final layer seals the sheet and protects the newly formed display." via Geek

How can a touchscreen display become a biometric scanner? "A team of researchers from Yahoo Labs has developed a much affordable alternative to fingerprint sensors for phones. It's a biometric system called "Bodyprint," and it only needs devices' capacitive touchscreen displays to authenticate body parts. Since displays have lower input resolution compared to specialized sensors, the system requires you to use larger parts of your body. It can recognize your ear, fist, phalanges, set of five fingers and your palm -- simply press any of them on the screen for access. In addition to serving as your phone's gatekeeper, it has a number of other potential applications, as well. (Video)" via Engadget

How can video display re-create human vision models? "Image processing technology has achieved remarkable breakthroughs, with more vivid colors, richer detail and higher definition images. This adds up to better resolution and a broader range of available colors at lower cost per pixel. But despite these stunning advances in visual display, it has been impossible to accurately reproduce what the human eye would see when viewing the scene directly. ...The human eye adjusts how it sees colors based on brightness, and color of the viewing light. Technological displays, unlike the human eye, do not differentiate between regions that should be adjusted (such as shadows) and those that should not. ...This new era of real-time color processing, first developed by Entertainment Experience for its eeColor software application, in partnership with Rochester Institute of Technology, is now a reality. The new model displays vibrancy that even in Ultra HD, has never before been possible." via TechRadar

Could Silver Nanowire Conductors Improve Touchscreen Displays? "There are several factors that make silver nanowires a material ideally suited to new products for the "touch age." Let's start by noting that touchscreens should be thin, light, visible in various ambient light conditions, highly responsive, and -- perhaps most importantly -- lower-cost. The most popular touchscreen technology is projected capacitance, or pro-cap. At the core is a transparent conductor -- a layer of material that needs to conduct electricity while remaining transparent so as to allow light from the underlying display to shine through the screen. Indium tin oxide (ITO), the legacy conductor material, is neither very conductive nor transparent compared with silver nanowires. It's also too brittle for flexible display and touch applications. Forthcoming generations of both smaller and larger touch interfaces need to be very responsive; also, the display needs to be bright and visible in all types of ambient lighting. This requires notably more highly conductive transparent conductors with high transmission ability. Silver nanowire delivers on all counts." via EE Times

World's first multitouch, button-free 3D shaped panel for automotive "Canatu, a leading manufacturer of transparent conductive films, has in partnership with Schuster Group and Display Solution AG, showcased a pioneering 3D encapsulated touch sensor for the automotive industry. The partnership is delivering the first ever, button-free 3D shaped true multi-touch panel for automotives, being the first to bring much anticipated touch applications to dashboards and paneling. The demonstrator provides an example of multi-functional display with 5 finger touch realized in IML technology. The integration of touch applications to dashboards and other paneling in cars has long been desired by automotive designers but a suitable technology was not available. Finally the technology is now here. Canatu's CNB™ (Carbon NanoBud®) In-Mold Film, with its unique stretch properties provides a clear path to the eventual replacement of mechanical controls with 3D touch sensors. The touch application was made using an existing mass manufacturing tool and industry standard processes." via Printed Electronics World

What did you think about today's news? Leave a comment here and share your thoughts.

Tuesday
Mar172015

Display Industry Technology News Roundup 3.17.2015

Image via Saarland University

DIY printing custom touch-sensitive displays "Computer scientists from Germany's Saarland University have developed a technique that could allow anyone to literally print their own custom displays, including touchscreens. Using a regular inkjet printer equipped with a special ink, a DIY thin-film electroluminescence (TFEL) display can simply be printed out from a digital template of the desired size and shape using a program like Microsoft Word or Powerpoint. "So far, nothing like this has been possible," says researcher Simon Olberding. "Displays were produced for the masses, never for one individual user."" via Gizmag

Japan Display confirms new plant "Japan Display Inc said on Friday that it would build a new $1.4 billion liquid crystal display (LCD) manufacturing plant, which a source said would supply smartphone screens for Apple Inc. The company did not name Apple, in line with its policy of not identifying clients. A person familiar with the matter said Apple would also invest an unspecified amount in the plant, which would further the Japanese screen maker's aim of becoming the primary supplier of high-tech screens for iPhones. ...Japan Display said it aims to start operations at the plant in 2016 and expects the move to increase its LCD capacity by 20 percent. The company, formed in a government-backed deal in 2012 from the ailing display units of Sony Corp, Toshiba Corp and Hitachi Ltd, has led a volatile course since its public offering last year." via Reuters

Sharp Reiterates Commitment to Panel Business ""Our panel business hasn’t worsened to the point where we’re saying it is facing an uphill battle yet, and we are committed to developing more value-added products and to remain an important pillar for the company," Norikazu Hohshi, who heads Sharp’s device business, said at a news conference. The display maker recently slashed its business outlook, saying it would record a net loss of ¥30 billion ($246 million) in the fiscal year ending this month, compared with a previous forecast of a ¥30 billion net profit. The company has struggled as rival Japan Display Inc. has made aggressive sales pitches to Sharp’s main customers in China such as Xiaomi Corp." via The Wall Street Journal

Is VR Union more immersive than Oculus Rift? "VR Union, a two-year old startup based in Prague, has leapfrogged his advances in virtual reality by creating virtual-reality goggles with a display that is triple the resolution of anything else available on the market. ...VR Union also found a way to leverage Fresnel lens technology, originally developed by French physicist Augustin-Jean Fresnel for lighthouses in 1823. The tech allows for a nearly 180-degree field of vision and makes it possible for users to wear prescription glasses inside the headset. In contrast, Oculus uses a conventional heavier aspheric lens, similar to a handheld magnifying glass, that offers a 100-degree field of vision. VR Union says the conventional approach disturbs complete immersion by creating the effect of peering through two short tubes. Dozens of display companies, including Sony and Samsung, are vying to become the global standard for VR goggles before they become a mainstream device." via Fortune

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Are real-time holographic displays one step closer to reality? "Real-time dynamic holographic displays, long the realm of science fiction, could be one step closer to reality, after researchers from the Univ. of Cambridge developed a new type of pixel element that enables far greater control over displays at the level of individual pixels. The results are published in Physica Status Solidi. ...“In a typical liquid crystal on silicon display, the pixels’ electronics, or backplane, provides little optical functionality other than reflecting light,” said Calum Williams, a PhD student at Cambridge’s Dept. of Engineering and the paper’s lead author. “This means that a large amount of surface area is being underutilised, which could be used to store information.” Williams and his colleagues have achieved a much greater level of control over holograms through plasmonics: the study of how light interacts with metals on the nanoscale, which allows the researchers to go beyond the capability of conventional optical technologies." via R&D Mag

Sharp's sensitive 70-inch LCD responds to brushstrokes "The capacitive touch panel screens, shown off Tuesday in Tokyo, provide an experience that's closer than ever to working with pen and paper, even with large screens. Technology in the prototypes could be used in a range of applications from sketching to calligraphy to writing memos on mobile devices. ...Capacitive stylus brushes and touchscreens that respond to pencil have been commercialized already, but Sharp says its displays are more sensitive and work with large formats. When screens are larger, noise from the display reduces the sensitivity of the touch panel. Sharp was able to keep the noise in check by using a parallel drive sensing method, which drives the processes of multiple touch sensors at the same time." via CIO

How do LED displays work? These amazing GIFs show exactly how "Designer Jacob O'Neal of Animagraffs.com has created a series of beautiful animations that show just how all these pixels and crystals combine to display the words and pictures we see." via Business Insider

Prototype of Retina Imaging Laser Eyewear for Low-Vision Care "QD Laser, Inc. and the Institute for Nano Quantum Information Electronics at the University of Tokyo announced the prototype of the retina imaging laser eyewear for low vision care. ...The laser eyewear has a miniature laser projector on the glasses frame that provides the wearer with digital image information using the retina as a screen. Remarkable characteristics, not achieved by other devices using liquid crystal displays (LCDs), are as follows: 1. Wide viewing with a small device owing to the projection principle. 2. High brightness, high color reproducibility and energy reduction owing to semiconductor lasers as RGB light sources. 3. Image viewing at any position of the retina. 4. Focus free - meaning picture clarity is independent of the individual’s visual power. 5. All optics to be installed inside the glasses owing to the “focus free” characteristics. The glasses appear to be normal." via Novus Light

Korean researchers develop microencapsulation technology for displays "A team of experts at the Korea Advanced Institute of Science and Technology have developed technology that they say will help viewers see images three-dimensionally. "We use molecular engineering to create rubber covered microcapsules that can move around in liquid and change shape and color, making displayed images look three dimensional." They say their technology, which microcapsules phototonic crystals, can be used for next generation reflective-type color displays that can bend or fold. What's more, these microcapsules have characteristics that allows them to change colors based on varying temperatures, which would result in a more brilliant display panel." via Arirang

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

How does Kyocera's smartphone display prototype soak up solar power? "This week at Mobile World Congress in Barcelona, Kyocera is showing off a concept phone that uses its own display to convert the sun's rays into juice for its battery. While we've previously seen devices that harness the sun's rays via solar cells mounted on the chassis, Kyocera's prototype employs a transparent photovoltaic layer that can be placed on top of or beneath the touchscreen. The specific technology on display this week comes from a company named Sunpartner, which makes a power-generating display layer called the Wysips (What you see is photovoltaic surface) Crystal connected to a chip that manages and converts solar energy into power that can be stored in the device's battery. Sunpartner says Wysips is capable of delivering up to 5 milliWatt-peak/cm2, a figure the company expects to soon double thanks to next-generation photovoltaic materials. The layer is only 0.1 mm thick, making it easy to add to a device without impacting the aesthetic design. The company also claims that it will not impact the the display's touch capabilities. (Video)" via Gizmag

AMD's LiquidVR Technology Signals New Battleground For The GPU Wars "The holy grail of virtual reality is a concept known as presence. For a user to feel fully immersed in a virtual environment, the time between the user moving their head or hands and seeing that action reflected in the virtual space (defined technically as "motion-to-photon latency") needs to be minimal, or preferably non-existent. Reducing that latency involves a lot of moving parts, from the software to the GPU to the display technology inside of a VR headset. That’s the battleground, and it’s what AMD hopes to improve with LiquidVR. The company says it intends to bring "smooth, liquid-like motion and responsiveness to developers and content creators for life-like presence in VR environments powered by AMD hardware." AMD released the Alpha version of their LiquidVR SDK (software development kit) to developers today." via Forbes

ITO Recycling: A Green Ecosystem for Multi-Screen Era "One person having multiple devices is already an unshakeable trend. Moreover, manufacturing more display screens means ITO material consumption. Consequently, finding ways to create environmentally friendly recovery mechanisms for display materials in the multi-screen era will be an important link for the industry’s sustainable development. Environmental ITO recycling technology is beginning this solution mechanism. ...Currently there are two major sources of Indium tin oxide recycling. The first is ITO glass (such as displays, touch panels, and solar batteries). The second is ITO target materials. The former requires first breaking the materials into pieces, and then a chemical solution is used to filter out impurities and refine Indium tin. Afterwards, from the cladding material equipment, stripping and refinement can be carried out by directly soaking it in a solution." via CTimes

How will digital signage benefit from new reading speed technology? "Reading a text is something that each of us does at our own individual pace. This simple fact has been exploited by computer scientists in Saarbrücken who have developed a software system that recognizes how fast a text on a display screen is being read and then allows the text to scroll forward line by line at the right speed. The technology makes use of commercially available eye-tracking glasses, which are able to capture the motion of the user's eyes and convert this into a reading speed. Potential future areas of applications include electronic books or the large-scale displays used in railway stations and shopping centres. The research team will be showcasing its project from March 16th to March 20th at the Cebit computer expo in Hanover." via Phys.org

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

Retina MacBook Pro Users Complain of Anti-Reflective Display Coating Wearing Off "A growing number of users have turned to the Apple Support Communities, MacRumors discussion forums and Facebook in recent weeks to voice their complaints about the anti-reflective coating on Retina MacBook Pros becoming stained or wearing off. The long-standing display issue appears to affect several MacBook Pros, including mid-2012 to mid-2014 models sold between June 2012 and present. The anti-reflective coating appears to be wearing off under a variety of circumstances, including the pressure of the keys and trackpad on the display when closed, and the use of third-party cleaning solutions and microfiber cloths. While the issue is typically isolated to small areas of the screen, some users have shared pictures showing the anti-reflective coating wearing off across virtually the entire display." via MacRumors

Researchers create glasses-free 3D display with tiny spherical lenses "The most successful foray into the realm of 3D technology is probably the Nintendo 3DS, which has sold quite well by the standards of handheld game consoles. Part of that is effective use of 3D in games, but more importantly, you don’t need glasses to experience a 3D effect. Glasses-free 3D comes with drawbacks, but a team of researchers from Chengdu, China might have figured out how to make this type of 3D viable using spherical lenses in the display. ...Most people can tolerate a narrow viewing angle with a handheld device. But with anything larger, it’s far too inconvenient. The spherical lens display design featured in the new paper has the potential to boost the viewing angle of an autostereoscopic screen dramatically. The proof-of-concept display created by the researchers works at 32 degrees, with a theoretical viewing angle of up to 90 degrees. Additionally, microsphere-lens (MSL) arrays can be produced inexpensively using ball placement technology." via ExtremeTech

UniPixel Touchscreen Film Near Manufacturing "Texas-based UniPixel and its joint venture with Eastman Kodak Co. has been plagued with delays as it works on the underlying technology, which would use a similar process Kodak traditionally used to make film. The two companies announced in 2013 the joint venture that was expected at that time to turn out touchscreen sensor film by the end of that year from its Eastman Business Park plant. Now, nearly two years after that initial announcement, UniPixel CEO Jeff Hawthorne said the company expects initial commercial shipments in the second quarter of 2015." via Democrat & Chronicle

Qualcomm’s fingerprint tech turns touchscreen into Touch ID "The company has announced Snapdragon Sense ID 3D Fingerprint Technology at MWC 2015, a long name for what's shaping up to be a potentially big improvement in security ergonomics. Rather than a capacitive sensor, as used in Apple's Touch ID and on the new Samsung Galaxy S6, Qualcomm's approach uses ultrasonics so that it can sense through a variety of materials. ...That would mean pressing your finger against the display itself could be used to authenticate access, allowing for slimmer and more compact devices overall. Qualcomm says the sensor can see through sweat, grease, and hand-lotion, and other substances which would confuse a regular biometric scanner. Interestingly, an Apple patent suggesting just that sort of approach, embedding Touch ID into the touchscreen rather than in the home button, was spotted back in February." via SlashGear

AUO pushing 5 major selling points for panels "For 2015, AU Optronics (AUO) is pushing five major selling points for its panels to boost product demand. The points are Ultra HD resolution - AUO will upgrade all sizes of its panels to support Ultra HD resolution; curved display technology; integrated touch control technology; image improvement technologies such as wide color gamut and ultra-high dynamic contrast; and value-added functions for industrial, enterprise, car-use and wearable applications. The points were outlined from AUO president Paul Peng who added that AUO's aim for 2015 is not to gain market share but rather focus on profitability from high-end, differentiated products that outline AUO's technology advantages in the market." via DigiTimes

Flexible Hybrid Films For Longer Lasting Displays "The paper by polymer scientists Park Soo-Young and Cho A-Ra of Kyungpook National University describes a method to create a type of so-called "hybrid" film, composed of both inorganic and organic materials. A process known as the sol-gel fabrication technique can create hybrid films, but it, too, is less than ideal, because it requires the use of acids that corrode the metals and metal oxides in the devices' electronic components. … The hybrid films showed less depreciation in flexibility after 10,000 bending cycles than the inorganic layered films. Resistance of a material increases because of the formation of minute cracks as it flexes—just as it would when used in a flexible display screen. A film with higher resistance has lower electrical conductivity, meaning that more voltage must be applied to send a signal through it, which further degrades the material." via AsianScientist

NASA Is Developing Wearable Tech Glasses for Astronauts "The U.S. National Aeronautics and Space Administration is working on computerized glasses for astronauts that can guide them through how to repair a latch on their ship or conduct an experiment in space. NASA is teaming up with a San Francisco company called Osterhout Design Group, which makes augmented-reality glasses that project information onto the lenses. The plan is to create a system where how-to guides can be uploaded to the glasses, allowing astronauts to follow directions while their hands are full. NASA's engineering teams are working on integrating their software into the glasses and, later this year, will test them in an undersea lab to simulate the environment of space flight. Eventually, the device will be submitted to NASA's flight program team for its first trip into space." via Bloomberg

Visual science research is needed as displays get "There is an interplay between design, which makes the display attractive and can be for branding, and legibility. As displays get smaller, there is less room for flexibility and the exact balance between design (which is an artistic endeavour), and legibility (which can be measured with visual science) becomes more important. The trouble is, said Reimer, that there is not yet enough visual science to pin down the legibility end of the spectrum: “As displays get smaller, we must think much more cohesively. We need to get much more to the root of visual science to inform decision makers so they can balance design with science.” MIT AgeLab, together with typeface company Monotype Imaging, has developed a method for testing the legibility of typefaces on screens under glance-like conditions – an adapted form of ‘stimulus onset asynchrony’ (SOA) for use on a PC, by automotive manufacturers and human-machine interface designers for example."via Electronics Weekly

What did you think about today's news? Leave a comment here and share your thoughts.

Saturday
Feb282015

Display Industry Technology News Roundup 2.28.2015

Image via Microsoft HoloLens

Microsoft unveils computer with ‘holographic’ display "Unlike competitors, Facebook-owned Occulus VR and Samsung, Microsoft aims not to immerse the user in an entirely virtual environment but instead to bring the virtual environment into the real world in the form of what it calls “interactive holograms”. HoloLens itself, an unassuming, futuristic-looking headset, will run the latest iteration of Microsoft’s Windows operating system, Windows 10. It is one of the first computers to operate solely using voice and gesture based commands. ...The transparent lenses in front of each eye are made up of three layers of glass, each corrugated with tiny grooves to form diffraction gratings.Visible light is projected onto the lens by a so-dubbed “light engine”, and is diffracted and reflected between the layers of glass, using constructive and destructive interference of the light waves to create a virtual object in the user’s field of view." via Electronics Weekly

Apple Inc. Teams Up With Japan Display For LCD Production "Apple is reportedly in talks with Japan Display to help finance an LCD display factory in Ishikawa something next year. Japanese publication, Nikkan Kogyo, has reported that the deal is still in the works, and Apple is expected to invest around 200 billion yen ($1.7 billion) into this strategic partnership. The factory would be responsible for manufacturing low-temperature polycrystalline silicon displays utilized in the iPhone 6 and 6 Plus. Moreover, the Japanese publication states the factory will also be used to make OLED panels like the ones being used in the upcoming Apple Watch, slated for release in April." via Bidness Etc

Quantum dots: How nanocrystals can make LCD TVs better "Quantum dots are microscopic nanocrystals that glow a specific wavelength (i.e. color) when given energy. The exact color produced by the QD depends on its size: larger for longer wavelengths (redder colors), smaller for shorter wavelengths (bluer). That's a bit of an oversimplification, but that's the basic idea. Specific wavelengths of color is what we need to great an image on a television. Using the three primary colors of red, green, and blue, we can mix a full rainbow of teals, oranges, yellows, and more. Plasma and CRT televisions used phosphors to create red, green, and blue. All LCDs use color filters to do the same. There are multiple ways to use QDs in a display." via CNET

FlexEnable and Merck Take Major Step Forward in Plastic LCD Technology "A plastic LCD has been developed which is completely free of glass, instead using organic transistors on a plastic sheet, offering multiple benefits. Plastic LCDs have the potential of making products ten times thinner, more than ten times lighter and cheaper than conventional glass-based displays - all while delivering differentiating product benefits of being shatterproof and even conformal. The demonstrator was developed in a very short timeframe, and combines the key benefits of organic transistor technology (OTFT), including superior quality and yield. Ultimately, it shows a route to low-cost solutions for volume manufacturing with LCDs, the dominant display technology in the market today. FlexEnable has now demonstrated the world's first plastic LCD with active-matrix in-plane switching (IPS). It uses FlexEnable's OTFT array as well as liquid crystal (LC) and organic semiconductor materials from Merck. While the first demonstrator employs an IPS mode, this concept will be equally attractive for many other LC modes and applications such as e-readers, dynamic public signage and advertising. " via PR Newswire

Tech Time Machine: Screen and Display Technology History "'80s and '90s - Touchscreen Invades. IBM, Microsoft, Apple, HP and Atari are among just a few of the tech companies bringing touchscreen into the mainstream in this era. In 1992, IBM's Simon is the first phone with a touchscreen. FingerWorks, a gesture recognition company that is later acquired by Apple, produces a line of multi-touch products in 1998." via Mashable

Why are display makers looking to next-generation cars to drive growth? ""Previously, display makers saw little merit in auto displays because of their small volumes and slim margins ...but they are now revising their strategy as the market is growing," said Lee Byeong-hoon, a principal engineer at the South Korean unit of German auto parts giant Continental, the biggest buyer of automotive displays. Luxury cars already carry two or three displays and could have as many as nine in the near future, as safety and convenience features proliferate. Kia Motors' K9 sedan, for example, has five displays - an instrument panel, a centre information screen, two backseat displays and a "head-up" display projecting information onto the windshield. Future cars could add transparent side-window displays and replace rearview mirrors and side mirrors with screens, according to LG Display, the biggest liquid crystal display (LCD) maker." via The Star

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

How does rewritable paper print with light rather than ink "A new type of paper can be used and reused up to 20 times. What’s more, it doesn’t require any ink. Its designers think that this new technology could cut down on tons of waste — and save people tons of money. A special dye embedded in the paper makes it printable and rewritable. The dye goes from dark to clear and back when chemical reactions move electrons around. (Electrons are the subatomic particles that orbit in the outer regions of an atom.) The paper’s color-change chemical undergoes what are known as redox reactions. Redox is short for reduction and oxidation." via Student Science

Xerox licenses Thinfilm printed storage tech for smart labels "The Norwegian printed electronics firm Thinfilm has formed a strategic partnership with Xerox around printed storage. Xerox will license Thinfilm’s proprietary technology and make Thinfilm Memory labels, which have some very interesting characteristics. Each label, costing a few pennies, is a plastic tag that’s based on ferroelectric capacitors and allows for power-free archival storage in the 10-15-year range. This isn’t some data center technology though; we’re only talking 10-36 bits. They are however very rewriteable – the data can be rewritten 100,000 times. This means the labels are perfect for continually storing and refreshing the output of sensors." via Gigaom

Pixel QI is Officially out of Business "Pixel Qi first first established in 2008 by Mary Lou Jepson and her husband John Ryan took over the reigns as CEO in November 2012. Mary left the company in March of 2013 to become Head of Display Division at Google X. John followed her in September to become the Director Program Management at Google X. With a non-existent executive team and no display prospects for the future, for all sense and purposes, Pixel Qi is out of business. The company designs liquid crystal displays (LCDs) that can be largely manufactured using the existing manufacturing infrastructure for conventional LCDs. The advantage of Pixel Qi displays over conventional LCDs is mainly that they can be set to operate under transflective mode and reflective mode, improving eye-comfort, power usage, and visibility under bright ambient light." via Good e-Reader

How Quantum Dots Are Taking a Quantum Leap "Outside his career as a noted nanochemist, Lawrence Berkeley National Laboratory director Paul Alivisatos is an avid photographer. To show off his photos, his preferred device is a Kindle Fire HDX tablet because “the color display is a whole lot better than other tablets,” he says. What he may neglect to mention to the viewer is that not only did he take the photograph, he also helped invent the nanotechnology allowing the viewer to see those brilliant greens, rich reds, and bold blues, all while using significantly less energy. In fact, the Kindle display utilizes a technology manufactured by Nanosys, a startup Alivisatos cofounded in 2001 to commercialize quantum dots. ...Since then, Berkeley Lab’s quantum dots have not only found their way into tablets, computer screens, and TVs, they are also used in biological and medical imaging tools, and now Alivisatos’ lab is exploring them for solar cell as well as brain imaging applications." via Controlled Environments

Japan Display unveils low-power screen for smartwatches "Japan Display’s new screen could reduce power consumption dramatically since it’s designed to show color text and graphics without a backlight. Not only does that mean the screens use less power than traditional LCD displays, but they’re also easier to view in direct sunlight. Japan Display says its screens also feature memory built into the pixels of the display, allowing a watch to display a static image without using much electricity." via Liliputing

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Glasses-free 3D could revolutionise advertising and cinema "In 2013, the young start-up company TriLite Technologies had the idea to develop this new kind of display, which sends beams of light directly to the viewers' eyes, andhas been working with the Vienna University of Technology to create the first prototype. Currently it only has a modest resolution of five pixels by three, but it clearly shows that the system works. 'We are creating a second prototype, which will display colour pictures with a higher resolution. But the crucial point is that the individual laser pixels work. Scaling it up to a display with many pixels is not a problem', says Jörg Reitterer (TriLite Technologies and PhD-student in the team of Professor Ulrich Schmid at the Vienna University of Technology)." via Daily Mail

Startup developing full-color holographic display for mobile devices images and video. "Fattal’s company, appropriately named Leia, will demonstrate a prototype of its new 3-D display next week at Mobile World Congress in Barcelona. Later this year it plans to release a small display module capable of producing full-color 3-D images and videos that are visible—with no special glasses—from 64 different viewpoints.Key to Leia’s technology is an invention by Fattal that takes advantage of advances in the ability to control the paths light takes at the nanoscale. He first revealed the concept, which Leia calls a “multiview backlight,” in a Nature paper published two years ago. At the time, Fattal was a researcher at HP Labs and his work applied to optical interconnects, which allow computers to exchange information encoded in light. But he realized that the idea could also be used to display holographic images, and he left Hewlett-Packard to pursue that idea." via MIT Technology Review

New Technology Will Make Fonts Look Great on Small Screens "Monotype debuted Spark, a technology that consumers can’t even buy. In fact, a measure of Spark’s success down the line might be how few, not how many, people notice it. That’s because Spark is a new software program from Monotype meant to make fonts on tiny screens, like on smartwatches and digital dashboards in cars, as intuitive and legible as the ones on your computer. The problem with fonts on small screens has to do with bitmap fonts, which get pre-coded into devices because they require less computational power. Unfortunately, those bitmap fonts are pixelated, so they won’t allow for the beauty and flexibility of rendered fonts—like Times New Roman or Helvetica—which scale more easily and can be found on bigger computer screens with plenty of power. That poses a problem for manufacturers peddling luxury goods, because a crappy screen display could easily cheapen even the most beautiful of devices. This where Monotype’s new software comes in." via Wired

Tackling the "achilles' heel" of OLED displays "Kateeva aims to “fix the last ‘Achilles’ heel’ of the OLED-display industry — which is manufacturing,” says Kateeva co-founder and scientific advisor Vladimir Bulovic, the Fariborz Maseeh Professor of Emerging Technology, who co-invented the technology. Called YIELDjet, Kateeva’s technology platform is a massive version of an inkjet printer. Large glass or plastic substrate sheets are placed on a long, wide platform. A component with custom nozzles moves rapidly, back and forth, across the substrate, coating it with OLED and other materials — much as a printer drops ink onto paper. An OLED production line consists of many processes, but Kateeva has developed tools for two specific areas — each using the YIELDjet platform. The first tool, called YIELDjet FLEX, was engineered to enable thin-film encapsulation (TFE). TFE is the process that gives thinness and flexibility to OLED devices; Kateeva hopes flexible displays produced by YIELDjet FLEX will hit the shelves by the end of the year." via R&D Magazine

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

Magic Leap CEO says Stereoscopic 3D may cause permanent brain damage "Recently the CEO of a Google backed start up Magic Leap has claimed Microsoft's HoloLens could cause permanent brain damage and to no one's surprise Magic Leap has a 'better' and 'safer' competing product. Without giving any details Rony Abovitz, the CEO of Magic Leap, says consumers should avoid HoloLens when it comes out and stick to products made with superior technology. "There are a class of devices (see-through and non-see-through) called stereoscopic 3D. We at Magic Leap believe these inputs into the eye-brain system are incorrect -- and can cause a spectrum of temporary and/or permanent neurologic deficits." - Abovitz" via WinBeta

Intel snaps up Swiss eyewear startup "Just as Google has stepped back from making networked eyewear, Intel is stepping into the gap with the purchase of Swiss startup Composyt Light Labs for an undisclosed amount. ...Most of the near-eye display technologies behind smart glasses involve some sort of trade-off. They either, like Google Glass, only show information in a small area over the eye, or are often too bulky to be practical. Composyt's smart glasses feature a patented see-through display architecture that shows images over a field of vision of 40 degrees on normal eyewear. The startup says the fact that its product works with standard and prescription glasses, has a large image size, and very high transparency will appeal to enterprises, where practicality is more important than designer style." via ZDNet

Displio Is A Tiny E-Ink Display That Runs Programmable Widgets "The Displio is the latest in a line of Internet-connected ‘displays’ designed to sit on a desk, or perhaps on a shop counter, and exhibit various online information, such as Facebook ‘Likes’, weather, number of unread email, and so on. However, although similar to the LaMetric, a fully-programmable but simple, ticker-style Internet-connected display, the Displio is considerably smaller, housing a 2.7 inch e-ink screen. Not only does this change the aesthetics considerably, and allows for a greater amount of information to be displayed, but e-ink’s lower power consumption — requiring power upon refresh only — means the Displio claims to be able to run on a single charge for up to a month." via TechCrunch

'Phorm' Case Adds Morphing Tactile Keyboard to iPad Mini "For the last several years, Tactus Technology has been working on displays that take advantage of microfluidic technology, with buttons that raise up and disappear on demand for a superior touchscreen typing experience. ...Here's how it works: there are a series of small channels filled with fluid behind an elastomeric panel (aka the screen protector portion of the case) and when activated by the slider, pressure is introduced, causing the fluid to come up through the channels and into holes, where it presses against the elastomer, physically changing and morphing the display portion of the case to create buttons. In the opposite slider position, the pressure is released and the buttons disappear as the liquid is dispersed back into the channels. (Video)" via MacRumors

Glyph head-mounted display shoots DLP images directly into your eyeballs "Rather than use an OLED display to provide an image, the Glyph uses a pair of small DLP arrays to bounce light directly onto the wearer’s retinas. This results in a very clear, very bright pixel-free image with an extremely high effective refresh rate. According to founder and chief strategy officer Edward Tang, Avegant started out with the intention of marketing its MEMS-based DLP display technology to the military, before the sudden explosion in the consumer market (driven, as Tang says, in no small part by Oculus) led him to retarget the technology at consumers. This has taken the form of a pair of chunky, oversized headphones, with the DLP components hidden in the connecting band. The idea is that you could wear the final production version of the Glyph (mostly) unobtrusively, and then perhaps flip the band down over your eyes when you’re on the train or something similar and want to watch a movie." via Ars Technica

See how different touchscreens were back in 1982 "While modern touchscreen displays use either a resistive or capacitive display to sense what your finger is touching, touchscreens in 1982 actually used a grid of intersecting infared light beams. When your finger touched the glass of the display, it would interrupt the horizontal and vertical infared light beams, sending a coordinate of where your finger was to the TV. (Video)" via Business Insider

DARPA developing neural display interface connected to your spine "The US military’s advanced research division – DARPA – has revealed details of its ‘cortial modem’ which wants to turn the inside of the human eye into an advanced display powered by the spine. Revealing details of its plans at an event called Biology is Technology (BiT) in the US, the organisation and its director Dr Arati Prabhakar said that their eventual goal is to an internal display system that would look as if you were wearing a Google Glass-style headset, but without any external technology. According to H+, DARPA’s short term goals are to begin by creating a small device that would cost no more than US$10 of showing a basic digital display, similar to a digital clockface, through a direct interface with the visual cortex." via Silicon Republic

Top 5 problems with HMIs (Human Machine Interfaces) "Backlit villains - When choosing a HMI, parameters such as display life, picture quality, and display brightness all need to be factored into the process in correspondence to the application. There's no need to get a super bright and or high quality interface if it's only used rarely or for menial tasks. Brightness often means heat. What you have to remember is that heat seriously affects the life of a backlight and, although some HMI manufacturers try to make bulbs easy to replace, it is more common for the entire unit to be replaced instead. This is obviously more costly and so efforts to reduce overheating and overuse should be made." via Process and Control Today

Sapphire Glass: Engineering vs. Physics "This long intro is a preface to discussion of Apple's recent decision to spend $2 Billion to convert the GTAT facility into a data center. Clearly Apple is giving up on sapphire, otherwise GTAT or some restructured version of it might be useful going forward. This would tend to show that Apple ran into a Physics Problem in converting from glass to sapphire, not: cost or yield issues, design issues, tooling or such. Sapphire actually had to physics issues fundamental to the nature of the material. As described in "Big Surprise," although sapphire was harder and more scratch resistant than glass, with that hardness came brittleness. Secondly, and more importantly, sapphire has a higher index of refraction meaning that screens made with a sapphire overlay would have much higher surface reflections than glass." via Norm Hairston's Flat Panel Display Blog

What did you think about today's news? Leave a comment here and share your thoughts.

Sunday
Jan042015

Display Industry Technology News Roundup 1.4.2015

Image via Cicret Bracelet

Could You Transform Your Skin into a Touchscreen? "The bracelet works by projecting the interface onto the user’s arm using a tiny ‘pico projector’. When the wearer places their finger on the display projected on their skin, it interrupts the sensors encased in the bracelet, and this information is then relayed to the processor which responds - thus allowing the user to scroll, answer calls and generally use the screen projected on their wrists as they would their actual phone. If their crowdsourcing is successful, the waterproof Cicret bracelet could allow a user to access their phones services underwater, answer calls and texts without actually using their handset and access films, games and music with ease whilst on the go. (Video)" via Newsweek

Understanding Brightness in AMOLED and LCD Displays "AMOLED is a fundamentally different approach to the problem, which uses organic emitters deposited upon a substrate. These emitters are designed to emit red, green, or blue when voltage is applied across two electrodes. Similarly, TFTs are needed to control each pixel. As one can see, AMOLED is a simpler solution, but in practice the issues with such an implementation can be quite complex. In order to determine what picture content to use for a measurement of maximum brightness, we must turn to a measurement known as Average Picture Level (APL). This is best explained as the percentage of the display that is lit up compared to a full white display, so a display that is completely red, green, or blue would be 33% APL. As one might already be able to guess, with AMOLED power consumption is highly dependent upon the content displayed." via AnandTech

Toshiba To Show Advanced 3D/2D LCD Technology "The technology is said to use low-crosstalk liquid crystal lens technology with a high-definition gradient-index (GRIN) lens for a 15-inch 4K LCD panel. The GRIN lens system is engineered to avoid image brightness degradation in 3D mode and does not deteriorate image quality in 2D mode. It reduces the abnormal alignment of liquid crystal molecules near the boundaries of liquid crystal lens, reducing crosstalk to 2 percent, against 5 percent in conventional 3D displays, according to Toshiba." via Twice

What the hell are quantum dots, and why do you want them in your next TV? "The funny thing about LED lights is that they don’t glow white naturally. The “white” LEDs in your TV are actually blue LEDs coated with a yellow phosphor, which produces a “sort of” white light. But this quasi-white light falls short of the ideal. If you fed it into a prism (remember those from science class?) it wouldn’t produce a rainbow of light equally bright in every shade. For instance, it is woefully short on intensity in the red wavelengths, so red would appear dimmer than green and blue after filtering, thus impacting every other color the TV tries to make. Engineers are able to compensate for this uneven color intensity by balancing it with workarounds (you could dial down green and blue to match, for instance), but the intensity of the final image suffers as a result. What TV manufacturers need is a “cleaner” source of white light that’s more evenly balanced across the red, green and blue color spectrum. That’s where the quantum dots come in." via Digital Trends

Photonic computers promise energy-efficient supercomputers "As Big Data gets even bigger, there are concerns that trying to process it with conventional computing methods is becoming unsustainable in terms of power consumption alone. ...UK start-up Optalysys is among the pioneers of this new direction in information processing. The company has built a system using low-power lasers and tiny liquid-crystal displays (LCDs), using weather forecasting as an application in its R&D work with the European Centre for Medium-Range Weather Forecasts (ECMWF). ...Early demonstrator systems contained traditional optical components but the latest design replaces most of these with the micro-LCDs. Two-dimensional matrices of numbers are programmed into the input micro-LCD's grid such that the intensity level of each pixel represents a number. When a laser is shone through or is reflected off this input data pattern, the pattern is effectively 'stamped onto the beam', turning the data matrix into a waveform. After processing, the results are converted back into digital form with a camera." via E&T Magazine

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Mass production of innovative OLED displays "The YIELDjet FLEX tool was developed to enable Thin Film Encapsulation (TFE), which is the process that gives thinness and flexibility to the OLED device. It is the first product to emerge from Kateeva's YIELDjet platform, a breakthrough precision deposition technology platform that uses innovative inkjet printing to cost- effectively deposit coatings on complex applications in volume-manufacturing environments. ...TFE is an exceptionally complex process. At the center is a multi-layer stack of thin-film materials that are highly sensitive to oxygen and water. Particles on any layer cause defects throughout the device, and even the slightest uniformity aberration will distort the display image. The current production approach is vacuum evaporation. It's a well-established technology that uses shadow masks to deposit the layers in a stencil-like process. However, it is slow, inefficient, difficult to scale, and prone to yield-killing particles." via Printed Electronics World

How does this 4K display turn digital art into an analog experience? "The 50-inch display has a native resolution of 3,840 x 2,160, which is the standard for 4K Ultra HD. However, it isn’t a television, so don’t expect to tune into your favorite show. Think of it like a tabletop digital photo frame, but the extremely high resolution makes digital paintings and photography resemble more like those in museums rather than a digital signage (perfect for cameras that can shoot 4K photos). The large physical size also gives the artwork more impact. Because it supports animated GIFs, you can display moving art too. But the Depict Frame doesn’t want viewers to know that it’s a digital screen. Its industrial designers intentionally made it to resemble a regular framed art – digital meets analog." via Digital Trends

Jaguar Makes Blind Spots Transparent Using External Cameras, Internal Display Screens "The so-called 360 Virtual Urban Windscreen embed a layer of OLED screen on the car’s “pillars” – the chunky visibility-blocking body panels supporting a vehicle’s roof – that are connected to external cameras and motion sensors. When the car is stopped at an intersection and detects pedestrians, the pillar screens are activated, making them appear transparent. They deactivate after the car starts moving again. When drivers turn their heads to check rear blind spots, cameras linked to side pillar screen are activated to offer greater visibility while making lane changes. The vehicle’s entire windshield also acts as a head’s up display highlighting stoplights and even places of interest (landmarks, parking garages). (Video)" via International Business Times

Display industry standoff between Beijing and Seoul threatens tech trade pact "South Korea, home to the world’s biggest manufacturers of liquid crystal display screens for televisions, is pressing for the inclusion of flat-panel displays in the current round of talks for a broader Information Technology Agreement (ITA), a plurilateral tariff-cutting pact launched in 1997 under the World Trade Organisation. "It seems this issue is the most serious obstacle to an agreement on expanding the product scope of the ITA,” a source familiar with the negotiations said. “China remains adamant that flat-panel displays cannot be added to the ITA list for zero tariffs because that would effectively increase the cost of the agreement to the country."" via South China Morning Post

This Giant Rainbow Was Made With Display Tech That's Used To Study Exoplanets "It's not very often that the fields of advanced photonics and installation art meet. But in Amsterdam this week, visitors to the city's Central Station are getting a look at what happens when liquid crystal optic technology is used to something completely unscientific: Make public art. ...The installation uses something called a spectral filter—a filter that takes white light and then disperses it into the full range of colors in the rainbow without losing any hues or light to leakage, based on a technology called geometric phase holograms. In this case, Escuti created a filter with a film of liquid crystal that dispersed light from a four kilowatt spotlight into a perfect rainbow on the glass facade of the train shed." via Gizmodo

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

How could display technology learn from spider webs? "Structures as commonplace as spider webs and leaf venation show they can lead to near optimal performance when copied to create flexible and durable networks that can be used in optoelectronic applications such as photovoltaic devices and display screens, the researcher team reported in a recent edition of the journal Nature Communications. ...A second network, drawing on the same designs that make spider webs effective traps for insects and bugs, serves as an efficient way to draw light through an optoelectronic device. The network could find potential application in next generation touch screens and display panels because of its extreme flexibility, significant mechanical strength, "stealth" transparency and high degree of uniformity, the researchers said." via PD&D

How Touchscreens May Lose Their Touch "The 3-D motion sensing of SpaceTouch is made possible by the addition of invisible electrodes to an everyday touchscreen. These electrodes generate an electric field in front of the touchscreen. When a hand moves through the electric field, information about the movement can be acquired by a specialized computer chip. The possible applications for this technology are many, said Verma. For instance, a surgeon in an operating room could use SpaceTouch to scroll through a patient's X-rays. A cook could browse recipes on a surface embedded in an oven or refrigerator door. And three-dimensional sensing could create new possibilities for video games and educational tools. " via Princeton University

ESPN’s Octoviz display immerses viewers in a graphical experience "ESPN’s new Digital Center-2 (DC-2), which opened last June on its Bristol campus, houses the 10,000 square-foot “SportsCenter” studio, a visually rich eye candy showcase where imagery splashes across wall, floor and banner displays. At the epicenter of this live moving image experience is Octoviz, a one-of-a-kind innovation—imagined by ESPN and co-developed with Vizrt—that controls the displays of real-time graphics across any combination of on-set monitors in their native resolutions and aspect ratios." via TVTechnology

Touchscreens Clean Up Gulfstream Symmetry Flight Deck "Five years ago in an office with limited access to just a handful of Gulfstream employees, project pilots Scott Evans and Scott Martin began outlining the design of an advanced flight deck for their company’s new G500 and G600. The resulting design–the Symmetry flight deck–not only expands the envelope of avionics interface and infrastructure design but also shows how manufacturers are taking advantage of new engineering options to make flying safer and more efficient. In this new Gulfstream flight deck it is clear that there is no effort to edge pilots out of the cockpit and replace them with technology. “We do not want to replace the pilot,” said Evans. “We have a philosophy of supporting the pilot.” What the new design does is simplify the pilot interfaces, including replacing many knobs and switches with touchscreen controls and eliminating the massive control yoke in favor of a new type of sidestick control that makes the cockpit look much less cluttered, improves the view of the instrument panel displays and helps keep pilots in the control loop." via AINonline

Multitouch Gestures for All Automotive Segments "With ‘infrared curtains’, Continental developers are opting for an economical alternative to touch-sensitive or so-called capacitive displays. "Back in 2011, we showed that an infrared curtain can turn any surface in the car interior into a user interface," says Fook Wai Lee, display developer at Continental in Singapore. "We have now developed this technology to the point where it also recognizes typical multi-touch gestures as input, like swiping, zooming, and pinching." ...Continental's infrared curtain is built from an array of infrared light sources on the sides of the display. While a single row of LEDs was sufficient for one-finger operation, multi-touch gestures require two rows of infrared lights connected together. If a multi-touch gesture is performed in front of the display, the electronics of the human machine interface (HMI) recognize the finger's positions from the blocked light." via Autocar Professional

Touchscreen TFT displays for gloved hands "Itron has applied its vacuum fluorescent display (VPD) process to the production of projective capacitive touch sensors which it claims has performance and set-up benefits compared with indium tin oxide (ITO)-based projective capacitive touch panels. This low impedance touch technology, which the firm calls MPC Touch, works with 4mm of plastic or 8mm of glass overlay and is able to support applications where users are wearing a range of gloves from nitrile, nylon, cotton and leather. "Rain drops do not false-trigger the touch screen when the front panel is inclined to allow water to run off," said Itron UK managing director, Andy Stubbings." via Electronics Weekly

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

How laser-illuminated cinema projectors promise brighter and more realistic images "By definition, stereoscopic 3D films show a different image to viewers’ left and right eyes, thus cutting a projector’s apparent brightness in half. Polarising filters, used in most 3D cinemas, halve that again. The glasses worn by the audience take a fifth of what’s left. Pity the unlucky patron who watches a 3D film at the end of a projector’s lamp life: he might see just a tenth of the intended brightness. Little wonder, then, that 3D films have earned a reputation for dimness and causing eyestrain. Nearly three quarters of people opted for the 3D version of a film in 2008. Less than 40% do today. One possible solution involves that cinematic staple: laser beams. Rather than being attached to a shark’s head, used to intimidate an immobilised secret agent or vaporise a rebel planet, these lasers are kept safely in the projection booth. Laser-illuminated projectors cannot only deliver brilliantly bright images, in either 2D or 3D, but also promise better contrast, more natural colours, ultra-realistic high frame rates and resolutions that might finally approach those of film." via The Economist

Sony's new wearable display transforms any glasses into smartglasses "The device is much closer in design to Glass than Sony’s previous head-mounted wearable, SmartEyeglasses, which are glasses that can project basic green text and graphics across the lenses. The new 40-gram display consists of a band that goes around the back of a user’s head, with electronics on either arm. The control board on the right side contains a processor, sensor hub and Bluetooth and Wi-Fi modules. The unit has an electronic compass, accelerometer and a touch sensor for manipulating and selecting display contents. The 0.23-inch color OLED microdisplay, which Sony says is one of the smallest in the world, has a resolution of 640-by-400 pixels, which is slightly better than Glass at 640-by-360. It extends from the board and an optical unit reflecting the display contents is positioned near the right eye so vision isn’t blocked." via PCWorld

Chemical-Sensing Displays and Other Surprising Uses of Glass "Displays, in one way or another, account for about half of Corning’s revenue, with roughly a third of that coming from Gorilla Glass. To expand this market and withstand challenges from other materials, Corning is trying to add capabilities to Gorilla Glass, such as the sensor application. And it’s looking for new markets for Gorilla Glass beyond displays. The ability to turn your phone into a biological and chemical sensor is one of the earliest-stage projects in the lab. Researchers at Corning and Polytechnique Montreal discovered that they could make very high quality waveguides, which confine and direct light, in Gorilla Glass. The researchers were able to make these waveguides very near to the surface, which is essential for sensors. Doing so in ordinary glass would break it. Making the waveguide involves focusing a beam of intense laser light near the surface of the glass, then tracing it along the glass, which locally changes its optical properties." via MIT Technology Review

Entry-level and high-end converging to propel the digital signage market into 2015 "Integrators are seeing increased price competition for large-scale kiosk rollouts in big-box retail, among other settings. Until now, the only low-cost option was to try to work with a consumer device that wasn't built for digital signage and didn't deliver the reliability and functionality of commercial-grade, purpose-built player. Now that professional-quality, reliable, low-cost, networked signage players are available, we are seeing more and more new customers jumping at the chance to replace printed signage with digital displays in applications where cost was previously a barrier. If 2014 was all about 4K, I believe that 2015 will be a year of healthy and sustainable growth in the digital signage industry — growth driven by the proliferation of 4K and the emergence of reliable low-cost digital signage solutions." via Digital Signage Today

3D virtual reality display technology for medical schools "ZSpace and EchoPixel aim to improve medical education with their virtual reality kit by enabling students and doctors to more accurately replicate work on organs than with other available technology, improving their knowledge and experience so they make fewer errors. ...Accurate replications are one of the main problems facing virtual 3-D technologies. If objects can't be manipulated in virtual space just as in real life, one can imagine it will be hard for anyone to buy into the technology, much less a doctor who needs the most accurate data to determine a patient diagnosis like colon cancer. There are several reasons why objects may not appear accurate in virtual spaces. Visual and position tracking speeds, poor 3-D display resolution and even a limited field of view can all lead to inaccuracies, according to research at several universities. Together, they can even lead users to experience motion sickness. The zSpace 3-D display aims to minimize these problems." via Silicon Valley Business Journal

Do Displays Matter? "In our era, hardware – including displays - quickly becomes commoditized. That is not to say that you can’t obtain a temporary competitive advantage with a dazzling display: the thin Samsung edge-lit “LED” TV, the Apple Retina and the Asus Zenbook NX500′s 4k, quantum-dot-enhanced display. And you can hurt yourself by falling behind the curve. When Apple saddled its iPhones with a ridiculously small 4″ display for a couple of years longer than it should have, Samsung picked up significant market share. (Apple still plays in a somewhat different universe from the rest of us, so it reaped record breaking sales with the iPhone 6 simply by catching up with the competition.) But the business model by which handset companies could maintain large margins by upgrading the hardware a couple of times a year is rapidly losing its effectiveness. " via Display Central

OLEDS and Why Your Old CRT TV Still Works "In a CRT, glass provided an absolute hermetic environment. The CRT was made in a clean environment, the inside of the tube, where the phosphors were, was maintained in high vacuum. Further a sacrificial barium "getter" was deposited on the inside of the tube to bind any stray oxygen that was left over from manufacture. So, the phosphors did their thing in an absolutely pristine environment that was maintained as long as the tube continued to hold its vacuum, which is tantamount to forever for a consumer product. ...The high voltage architecture may have some relevance to OLED design as well. But certainly, cleanliness and hermaticity are the key to making OLED technology work." via Norm Hairston's Flat Panel Display Blog

What did you think about today's news? Leave a comment here and share your thoughts.

Monday
Dec012014

Display Industry Technology News Roundup 12.1.2014

Image via Cobia Boats / Florida Sportsman

Why Touchscreens Are a Good Option for Marine Boat Manufacturers "The collaboration between Garmin, Scout and Mastervolt was the first of its kind for the boat industry. “The future for Scout Boats is that all of the models will someday have digital switching.” Stands to reason that as more boat companies add digital switching to their models, the cost of components will come down. Programmable control over systems allows a boat builder to consolidate several items that an owner may wish to activate simultaneously. These “modes,” as they are called, may include choices like night fishing and entertainment, to name a few. Touch the screen for “night mode,” for example, and you could illuminate nav and courtesy lights while simultaneously dimming the MFD screens. In fishing mode, the MFD might bring up the GPS, fishfinder and radar while turning on the baitwell and raw water washdown. At the sandbar, entertainment mode could power up the stereo to a preset channel. The possibilities for customization are wide." via Florida Sportsman

How can users touch a touchscreen that isn't there? "An LCD screen lies face-up on the bottom of the setup, displaying the interface video – this could be a numeric keypad, a menu board of icons, or anything else. Sitting at a 45-degree angle above that screen is an aerial imaging plate (AIP), which is a sort of two-way mirror. When the user views that plate from the front, they see the LCD screen reflected through it. The illusion, however, is that the screen is hovering parallel to them at the front of the HaptoMime, instead of lying flat on its back at the bottom. It looks like they could reach in and touch the projected display, even though their finger would actually just pass right through to the AIP." via Gizmag

How Does LG Make OLED TVs Affordable? "LG believes that its M2 facility will deliver yield rates of around 70% from December. Also giving LG an OLED production advantage is its maskless WRGB patterning system, which does away with the expensive (and difficult to keep uniform at high resolutions) Fine Metal Mask system other brands have been using. LG’s final OLED production efficiency comes from its Solid Phase Encapsulation system. This replaces the previous Edge Seal approach, and enables LG to use an easier-to-handle metal rather than glass foundation for the OLED cell structure." via Forbes

Why Is OLED Different and What Makes It So Great? "OLED technology, first successfully implemented in 1987 by Kodak researchers Ching W. Tang and Steven Van Slyke, takes this same idea as LED, but flattens it. Rather than an array of individual LED bulbs, OLED uses a series of thin, light emitting films. This allows the OLED array to produce brighter light while using less energy than existing LCD/LED technologies. And since these light-emitting films are composed of hydrocarbon chains, rather than semiconductors laden with heavy metals like gallium arsenide phosphide, they get that "O" for "organic" in their name." via Gizmodo

Sharp's LCD-challenging MEMS display coming in 2015 "LCD screens are built on a bright, white backlight that sits at the rear of the screen. Each pixel is divided into red, green and blue subpixels with color filters. Current applied to the liquid crystal in front of each of those filters allows or blocks transmission of light of that color. In a MEMS screen, there are no red, green or blue subpixels. Instead, a tiny electro-mechanical shutter allows or blocks light transmission through each pixel. Color is provided by the backlight, which cycles rapidly through red, green and blue. The shutters are synchronized to the backlight, moving open and shut in as little as 100 microseconds to let through light of the appropriate color." via CIO

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

How does MIT spinout’s quantum-dot technology make LCD TVs more colorful, energy-efficient "Color IQ is a thin glass tube, filled with quantum dots tuned to red and green, that’s implemented during the synthesis process. Manufacturers use a blue LED in the backlight, but without the need for conversion phosphors. As blue light passes through the Color IQ tube, some light shines through as pure blue light, while some is absorbed and re-emitted by the dots as pure red and pure green. With more light shining through the pixels, LCD TVs equipped with Color IQ produce 100 percent of the color gamut, with greater power efficiency than any other technology. " via MIT News

Scientists train robots to pull apart LCD screens – without breaking them "The group, comprising researchers from UNSW's School of Mechanical and Manufacturing Engineering and School of Computer Science and Engineering, started with LCD screens. The idea is to program self-learning routines into the robots, so that they can learn from their errors. ..."The idea is to remove the display and printed circuit board without damaging them because the rest can be recycled." The university hopes to attract participation in industry trials, which – given the amount of e-waste out there – Vulture South hopes isn't too hard to find." via The Register

How the Blue LED Changed the World, and Won a Nobel Prize "Akasaki and Amano, working as a team at Nagoya University in Japan, and Nakamura, working separately at Nichia Chemicals, a small company in Tokushima, and now at the University of California, Santa Barbara, built their own equipment and did thousands of experiments in the late 1980s, succeeding in obtaining the bright blue light from semiconductors. In the 1990s, the three scientists were able to make the blue LEDs more efficient. The prize, the assembly says, is meant to reward inventions that provide the most “benefit to mankind,” as per the wishes of Alfred Nobel. This invention has already changed the way we light buildings as well as the screens in our living rooms, on our desks, and in our pockets, and has the potential to provide light where electricity is hard to come by and clean polluted water, according to the assembly." via Newsweek

Why Samsung is betting on B2B market as next growth engine "The world's top smartphone and memory chip maker is pushing for a deal with premium carmakers in North America and Europe to supply digital signage platforms. Digital signage refers to large-sized commercial displays including outdoor advertising and hologram panels that use technologies such as liquid crystal displays (LCD) and light-emitting diodes (LED). Samsung has set this year's target for overseas digital signage about 50 percent higher than a year earlier, company officials said. In 2013, it won 2,000 orders from European car manufacturers. The tech giant's move came as a desperate effort to find a stable source of profit since the ailing smartphone business is taking its toll with a fall in global market share, sandwiched between Apple Inc.'s high-end strategy and cheaper products by Chinese rivals." via Yonhap News Agency

New LCD Technology Draws No Power with Static Images "One of the big benefits of e-Ink technology is that it draws no power when a simple static image is being displayed or when you are reading a page in an eBook. The only time power is being drawn is when a full page refresh occurs or if you are interacting with the screen. A new LCD initiative is underway at the Hong Kong University of Science and Technology. They have developed a new type of LCD screen that works in a similar fashion to e-Ink. It can hold a static image for years, with no power. The University has developed Optical Rewritable liquid crystal technology that carries no electrodes and uses polarizer’s as a substitute. It will show images in full color, but not draw any power as the image is shown. This would be tremendously beneficial to luggage tags, grocery price-tags or even in the next generation of color e-reader." via Good E-Reader

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Tech firm proposes using OLED screens to make aircraft cabins appear see-through "A conceptual video from the Centre for Process Innovation (CPI), which works with clients to prototype projects and ideas, shows a plane interior with seemingly invisible walls, panels and ceiling. These would be covered with screens made from flexible Organic Light Emitting Diode (OLED) technology – ultra-thin, lightweight and malleable displays – streaming high-quality footage broadcast live by cameras outside of the plane. ...As well as frightening aviophobes, removing windows entirely would significantly reduce the weight of a craft – potentially reducing its fuel consumption and carbon footprint. (Video)" via Dezeen

Samsung and the curious case of the red OLED "The colors displayed on Samsung’s Galaxy Tab S, according to Dieter Bohn, an editor for the tech-lifestyle website The Verge, “still tend to look over-saturated to my eyes,” though he added that “Samsung has toned things down considerably from years past.” In an otherwise positive review of a newer Galaxy S5 smartphone model, Anandtech, a computer hardware site, made note of “minor issues with excessive green in the color balance.” In essence, people seem to agree that the colors of AMOLED displays are more vivid. Whether or not those colors are natural or accurate based on what the eye would see in real life is another matter entirely. ...Colors are important on mobile devices for one overarching reason: managed expectations. Knowing that Twitter uses a sky blue color for its logo, it can be jarring for users and marketers alike to see a version with a tinge of green." via Fortune

How LG Display created world’s narrowest 0.7mm bezel LCD display "LG managed to accomplish this through a combination of two new manufacturing techniques. Its Neo Edge module processing technology uses an adhesive to seal the edges of the circuit board, rather than double-sided tape. This helps cut down on bezel width by removing the need for a plastic guide to attach the panel to the LCD backlight. The tight seal also helps to reduce light leakage, as well as making the panel water and dustproof." via Android Authority

China TFT-LCD panel, module makers target car infotainment "Automotive electronics represent the third key application for small and midsize TFT-LCD panels, and as such will continue to attract the attention of display component makers worldwide. In China, major panel players are at the forefront of initiatives to penetrate this market. Compared with popular devices smartphones and tablet PCs, the category has steeper requirements on reliability and durability. Products are designed to operate in a wider temperature range, typically between -40 and 85 C. They should withstand vibration and shock, in addition to being dust- and water-resistant. Releases must meet automotive-specific standards, including JIS, ANSI and SAE." via Global Sources

'Largest interactive advertising display in the world' set to light up Times Square "Second Story, part of agency SapientNitro, today announced that it has been engaged by Vornado Realty Trust to help unveil the largest LED advertising display in the world. Installed in the heart of Times Square on the Marriott Marquis, the interactive digital display stretches eight stories high and wraps the entire city block. The unveiling will transform the media landscape with its interplay of art, commerce and technology that pushes the boundaries of scale and interactivity, the company said. Second Story, in collaboration with digital artists Universal Everything, produced an experience that includes an abstract graphic narrative broadcast for the screen, through more than 23 million pixels, 10,000 times standard high-definition." via Digital Signage Today

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

Q&A With LG Display Engineers About Flexible Displays "WSJD: How clear can these see-through displays be? Lee: Currently ours come with a 30% clarity. To the normal eye, this level would seem close to those of car windows that have a slight tan on them. The target is to bring up the clarity to 40% by 2017, which should be significantly clearer. In comparison, traditional glass has clarity levels of approximately 92% but getting to this level with the current technology is unlikely without some breakthrough. The trick is to create a bigger, clearer transparent space in each pixel that is not obstructed by the minute transistors, which is extremely difficult both in terms of design and manufacturing." via The Wall Street Journal

Foldable OLED Display From Semiconductor Energy Laboratory (SEL) "The display is made by forming a release layer, sealing layer and color filter layer in this order on a glass substrate. The color filter layer and OLED layer are attached to each other, and the glass substrates are peeled off and replaced with flexible substrates. SEL informed us that the book type OLED and three fold Display can be bent more than 100.000 times and the displays can be bent up to curvature radius of 2mm and 4mm." via OLED-Display.net

Heads-Up Display Allows Drivers to Race Themselves ""Our passion is driver education,” said Hayes in a phone interview. "[GhostDash] allows you to see what you’re doing to go fast what you’re doing to not go fast." The GhostDash device is made of a thinplastic called Lexan that won’t degrade from exposure to sunlight and can be mounted as easy as plexiglass. This allows GhostDash to be positioned at eye level, providing drivers the ability to keep an eye on the road while noting race time. (Video)" via Boston.com

Carbon nano buds boast better conductivity than ITO "Canatu Oy, a Finnish startup, has developed the carbon NanoBuds (CNBs), which it describes as a hybrid nanomaterial that combines the conductive properties of carbon nanotubes (CNTs) and the chemical reactivity of fullerenes (hollow carbon molecules). ...Canatu is in business to manufacture coated PET and glass sheets in volume, for touchscreen manufacturers to process (patterning the electrodes through laser removal). The electrodes are then connected to off-the-shelve capacitive-touch driver ICs the same way they would with ITO. ...Because the deposited NanoBuds form a random network on the surface of the substrate, they can easily be stretched in any direction, explained Vuohelainen." via EET Asia

Will 3D LED Printer Create Heads-Up Display Contact Lenses? "The team, led by Michael McAlpine at Princeton University's McAlpine Research Group, has successfully used its printer to 3D-print quantum dot LEDs -- LEDs that are considered the next step up from OLED. QLEDs shine brighter and with purer colour, at a lower power consumption rate, using cadmium selenide nanocrystals. They're also ultrathin, flexible and transparent -- like, for instance, contact lenses. "The conventional microelectronics industry is really good at making 2D-electronic gadgets," McAlpine said. "With TVs and phones, the screen is flat. But what 3D printing gives you is a third dimension, and that could be used for things that people haven't imagined yet, like 3D structures that could be used in the body."" via CNET

Researchers create 3-D stereoscopic color prints with nanopixels "By designing nanopixels that encode two sets of information—or colors of light—within the same pixel, researchers have developed a new method for making 3D color prints. Each pixel can exhibit one of two colors depending on the polarization of the light used to illuminate it. So by viewing the pixels under light of both polarizations, two separate images can be seen. If the two images are chosen to be slightly displaced views of the same scene, viewing both simultaneously results in depth perception and the impression of a 3D stereoscopic image. ..."We have created possibly the smallest-ever stereoscopic images using pixels formed from plasmonic nanostructures," Yang told Phys.org. "Such stereoscopic images do not require the viewer to don special glasses, but instead, the depth perception and 3D effect is created simply by viewing the print through an optical microscope coupled with polarizers."" via Phys.org

Where Does Latin America Fit Into the Display Industry? "I’m currently in Brazil for the annual Latin Display conference – an SID event that is run to help to educate display users in Brazil, and give an opportunity for others in Latin America to meet and act as a focal point for the discussions about the Brazilian place in the display world. ...The city of Sao Paulo alone has 18 million people. That means that there is a huge consumption of displays in the country in TVs, mobile devices and in cars. However, the country’s involvement in the display side is somewhat limited. ...On the other hand, it’s not obvious, if you wanted to develop a display industry, how you would do it. Europe has many advantages over Brazil, but it still has only a limited display industry, these days. One of the strategies discussed was to pick a technology for the future based on some fundamental science and develop there. However, this has big risks, too. In Europe, Cambridge Display Technology and Novaled were successful companies in the growing OLED market, but both have been acquired in recent years by Sumitomo and Samsung, respectively." via Display Central

What did you think about today's news? Leave a comment here and share your thoughts.

Tuesday
Sep302014

Display Technology News Roundup 9.30.2014

Image via Flickr / That Hartford Guy

This 1980s General Motors Touchscreen Was Decades Ahead Of Its Time "For most drivers, the idea of a touchscreen that controls all of a car's functions is sci-fi that only recently became reality. However, in 1989 General Motors equipped its Oldsmobile Toronado Trofeo with a touchscreen system that was decades ahead of its time. Called the Visual Information Center (VIC), the touchscreen gave the driver access to everything from the radio to engine management data. (Video)" via Business Insider

How to build a real-time holographic display using doped liquid crystals "There are two common types of 3D display based on the principles of stereopsis (perception of depth). One exploits binocular parallax (the displacement in the apparent position of an object viewed along two lines of site), and the other makes use of light-field reconstruction. However, the ultimate goal is holographic display, which provides the most realistic 3D images of objects or scenes. This is because it can reconstruct both intensity and phase information, enabling the perception of light as it would actually be scattered by a real object, without the observer needing special eyewear. ...However, to show real-time, dynamic 3D images, there is a limited choice of suitable photorefractive materials with the necessary fast response and high modulation index to achieve a reasonable diffraction efficiency. This presents challenges in the choice of materials, devices, and system structures. Here we present a real-time holographic display featuring a liquid crystal (LC) doped with an azo (synthetic) dye. This material enables a video-rate display, since we can refresh each hologram on the order of several milliseconds." via SPIE

How are color-changing displays inspired by squids advancing LCD tech? "Scientists have long marveled at the squid's ability to sense the color of its surroundings, and then instantaneously change its own skin coloring in order to blend in. To that end, a number of projects have attempted to create man-made materials that are similarly able to change color on demand. One of the latest studies, being led by associate professor Stephan Link at Rice University, may ultimately result in improved LCD displays. The technology developed by the team currently consists of a prototype full-color display, which incorporates five-micron-square pixels made up of arrays of tiny aluminum nanorods to produce vivid red, green and blue-based colors. By electronically tuning both the length of the nanorods and the spacing between them, it's possible to alter the manner in which they reflect light – this in turn changes each pixel's perceived color." via Gizmag

Is the iPhone 6 Plus Display the Best Ever? "In its latest series of lab tests and measurements, DisplayMate called the iPhone 6 Plus the "best performing smartphone LCD display that we have ever tested." Specifically, the new 5.5-inch iPhone reached or broke records in a variety of areas, including highest peak brightness, lowest screen reflectance, highest contrast ratio, highest contrast rating in ambient light, most accurate intensity scale and gamma and most accurate image contrast. ...President Raymond Soneira wrote of the iPhone 6 Plus. "The iPhone 6 Plus is only the second Smartphone display (LCD or OLED) to ever get all Green (Very Good to Excellent) Ratings in all test and measurement categories (except for Brightness variation with Viewing Angle, which is the case for all LCDs) since we started the Display Technology Shoot-Out article series in 2006, an impressive achievement for a display. The iPhone 6 Plus has raised the bar for top LCD display performance up by a notch."" via CNET

Everything you ever wanted to know about display screen technology "On a glossier screen, less diffusion takes place, so the image appears sharper. Glossy displays may also be coated with an anti-glare finish to reduce distracting reflections; this means dark areas aren’t illuminated by ambient light as much as they would be with a matte screen, so the contrast of the screen appears to be greater. Choosing a screen type is a matter of personal choice as much as it is influenced by your environment and/or lighting conditions. As a rule of thumb, a matte screen makes sense for regular office work, or for a laptop that you intend to use while out and about; for games and movies, the vibrant colour and punchy contrast of a glossy screen may be more important – especially if the room lights will be darker." via PC & Tech Authority

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Blue phosporescent OLED lifetime increased by 10X "In a step that could lead to longer battery life in smartphones and lower power consumption for large-screen televisions, researchers at the University of Michigan have extended the lifetime of blue organic light emitting diodes by a factor of 10. Blue OLEDs are one of a trio of colors used in OLED displays such as smartphone screens and high-end TVs. The improvement means that the efficiencies of blue OLEDs in these devices could jump from about 5 percent to 20 percent or better in the near future. ...In collaboration with researchers at Universal Display Corp. in 2008, Forrest's group proposed an explanation for why blue PHOLEDs' lives are short. The team showed that the high energies required to produce blue light are more damaging when the brightness is increased to levels needed for displays or lighting. This is because a concentration of energy on one molecule can combine with that on a neighbor, and the total energy is enough to break up one of the molecules. It's less of a problem in green- and red-emitting PHOLEDs because it takes lower energies to make these colors of light." via University of Michigan

Is the display industry headed for a boom? "Foreign institutional investment analysts yesterday expressed an upbeat outlook on the global display panel sector, expecting the arrival of a rare boom unseen in recent years in the latter half of this year. According to James Kim, an analyst at Nomura Securities, expected windfall for the sector in the latter half of this year is attributed to expected constraints in production capacity that may persist for the next few years, and anticipated surge in demand for larger-sized LCD TV sets. Kim noted that it is difficult for larger-sized LCD display panel makers to initiate production capacity expansion currently amid an ongoing transition towards producing OLED panels. In addition, numerous panel makers have sustained tremendous losses since 2010, following a period of oversupply in the global markets, leaving them with little room to increase capital expenditure." via The China Post

Sharp aims to mass-produce new generation of display panels by 2017 "Qualcomm and Sharp said the new type of panel, called MEMS-IGZO after their respective display technologies, uses less energy and can withstand harsher temperatures than the liquid crystal displays (LCD) used in most smartphones and tablets. "LCD is really hitting its limits in a lot of things. We can go brighter and this is the first generation of this technology," said Greg Heinzinger, senior vice president of Qualcomm's technology licensing division and president of Pixtronix, at a briefing at Sharp's Tokyo office on Friday. ...Sharp said it will market the new technology to automakers, and makers of industrial devices, smartphones and tablets, and aims to start mass-production in 2017." via The Star

Are touchscreens going to be obsolete? "Although it’s too early to predict the end of an era for touch screens, it was interesting to hear Tetsuya Hayashi, one of the keynote speakers at Touch Taiwan, talking about development activities around post-touch screen technology in Japan. Hayashi, deputy director of Nikkei BP ICT Innovation Research Institute, illustrated the future of display technology as “ambient,” “free-form,” and “wearable.” Images, he foresaw, will be projected on any surface or in the air, instead of being constrained to a rigid, bulky box." via EE Times

Intel demonstrates a laptop with a second E Ink screen on the lid "The Asus Taichi line of notebooks feature screens on both sides of the lid — so when the lid is closed you find yourself holding a tablet. When it’s open, you have a laptop with a screen facing you and a second screen facing away. Now Intel is showing off a prototype of a laptop with a similar layout. There’s a screen on either side of the lid. The difference is the one that’s on top of the lid is a small, low power E Ink display. (Video)" via Liliputing

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Could Display Technologies Provide Camoflouge and Other Military Technologies? "Digital electronic display technologies, such as light emitting diode (LED), liquid crystal display (LCD), plasma, and digital projection, have advanced and proliferated rapidly in recent years. This has caused unit cost to decrease and quality and capability to increase. These technologies are no longer just for watching television or working on a computer. Massive LED screens are common on digital billboards, while nearly half of all Americans carry high resolution displays in their pockets in the form of smartphones. Displays are even beginning to break out of their traditional rectangular shape. LEDs can now be manufactured so that panels can be flexibly conformed to curved or irregular surfaces. Projection mapping techniques enable projectors to display images on three dimensional surfaces. All of these technologies have the potential to revolutionize the way the Navy operates for pennies on the dollar." via CIMSEC

How does an optical engine remove sharp pixels in displays? "Lemoptix has designed what it calls the world's smallest optical engine—25mm x 25mm x 12mm—and has worked to "despeckle" displays using proprietary technology. Without despeckling, a laser-driven display looks pixelised, with overly sharp pixels surrounded by obvious circles of black. Lemoptix has not revealed all the details of its despeckling algorithm, but it did reveal enough to win the Photonics West best paper award. In addition, Lemoptix has been to solve application problems to make its Hamamatsu modules easier for designers to use. For instance, it has built demonstration applications for heads-up displays on automobile windshields that work even in the brightest ambient light. It has also built 3D scanning solutions using structured light, embedded projectors for smartphones, and wearable displays for augmented-reality smart glasses." via EET India

TinyScreen thumb-sized display supports full color "Often the size of the screen controls how large your project is overall, and if you want small, TinyScreen is the ticket. TinyScreen is the size of your thumb and still supports full color. There are a myriad of uses for TinyScreen from homemade wearables to smart glasses to just about anything that can benefit from a small display. The screen uses OLED technology with 96 x 96 resolution, 16-bit color, and is designed to show data from the TinyDuino platform." via SlashGear

A 3D Display You Can Manipulate and Remotely Control "inForm is essentially a field of embedded pins that rise and fall independently to form shapes using information relayed by a computer. The creators of inForm describe it as a Dynamic Shape Display that can display real-time 3D information as well as receive input from users. Developed by MIT Media Lab‘s Tangible Media Group, it is able to display 3D information in real-time and in a more accurate and interactive manner compared to the flat rendering often created by computer user interface." via psfk

What's the difference between digital signage and touchscreen kiosks? "The most important difference between digital signage and touchscreen kiosks can be summed up in a single word: interaction. Enticing a visitor to interact with your message is a universal business goal. A touchscreen kiosk will provide you with all that digital signage can offer, but with an added layer of engagement. … Touchscreen devices are typically more expensive than equivalent-size digital signage monitors. In addition, the deployment of an interactive touchscreen kiosk requires a more in-depth design and development phase, so the software pricing can also be higher." via Digital Signage Today

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

How Could Virtual Reality Displays Transform Education? Oculus VR Interview "We showed the folks from the Smithsonian, we showed folks from a number of different industries—the automobile industry, the architecture industry—we’ve shown people the latest prototype, and they’ve gotten incredibly excited about the visualization aspect. Imagine, you could scan in everything in the Smithsonian—they have 130 million objects. Let’s get 10 percent of them or 20 percent of them. You could put on a pair of … sunglasses, and with those sunglasses you could see those objects and you could look around and you could see it so well and so clearly, and it would track so perfectly that your brain would believe it was really right in front of you. The next step past that is when you have shared space, and not only do you believe that this object is right there in front of me, but I look around and I see other people just like we see each other now, and I really, truly believe that you’re right in front of me. We can look at each others’ eyes. If you look down at something, I can look down at the same time. And it’s every bit as good as this. And if we can make virtual reality every bit as good as real reality in terms of communications and the sense of shared presence with others, you can now educate people in virtual classrooms, you can now educate people with virtual objects, and we can all be in a classroom together [virtually], we can all be present, we can have relationships and communication that are just as good as the real classroom." via The Chronicle of Higher Education

The first functional graphene-based flexible display has been produced "Graphene has been called a “magical” material that may hold the key to better electronic gadgets, both when it comes to device durability but also electrical abilities, as various research teams are figuring new ways to put the astonishing material to good use. … Researchers from the Cambridge Graphene Center and Plastic Logic managed to build the first such product, a flexible display that could equip a variety of gadgets in the future. “The new prototype is an active matrix electrophoretic display, similar to the screens used in today’s e-readers, except it is made of flexible plastic instead of glass. In contrast to conventional displays, the pixel electronics, or backplane, of this display includes a solution-processed graphene electrode, which replaces the sputtered metal electrode layer within Plastic Logic’s conventional devices, bringing product and process benefits,” a University of Cambridge report says." (Video)” via BGR

How Does New Augmented Reality Industrial Display Hardhat Protect Workers? "The DAQRI Smart Helmet has a hands-free wearable HD display with fully transparent optics that provide always-on functionality readable in both low light and bright conditions. It is described as “an elegant fusion of the most sophisticated display and sensor hardware with next-generation computer vision.” ...The Smart Helmet’s ‘True 4D’ display will enable organizations to provide intuitive instructions to their workforce. This should ensure that workers understand processes more quickly, spend less time on each step, and make fewer errors. (Video)" via psfk

The Story of Pixel Density and Touch Interface "It’s clear that the reason Apple chose precise scaling factor has been driven by the intention to produce crisp design with no compromise on antialiased UI elements rendering. It is often seen when you have a lot of 1pt stroke line in your design. Apple thinks for the developers and for the consumers too. From its original iPhone inception, Apple has been adamantly guarding how its User Interface will be rendered on user devices. The original iPhone to its iPhone 4S had exactly the same effective resolution of 320pt by 480pt. We praised Apple’s UI workmanship and its call on attention to detail. There is an interesting case of iPhone 6+ where Apple choose not to continue with the pixel-perfect scaling tradition. Read it here: The Curious Case of iPhone 6+ 1080p Display" via Medium

Should Touchscreens Be Built Into Every Desktop Design? "Like tablets before them, the ergonomics of these hybrid gizmos demand UI conventions that depart from desktop layouts of similar screen size. The hybrids not only need big touch targets to accommodate clumsy fingers, but they also need controls and navigation conveniently placed where hands naturally come to rest. Designing for touch introduces elements of industrial design: physical comfort and ease are critical considerations. Unfortunately, the top-of-screen navigation and menus of traditional desktop layouts are outright hostile to hybrid ergonomics. Tried-and-true desktop conventions have to change to make room for fingers and thumbs. For now at least, the solution is not just a matter of designing separate interfaces for touch and non-touch gadgets. That won’t fly, because as designers (and especially web designers) we often don’t have enough information about the device. After poking at this problem for a few weeks, my conclusion is: every desktop UI should be designed for touch now. When any desktop machine could have a touch interface, we have to proceed as if they all do. Walk with me." via Global Moxie

What did you think about today's news? Leave a comment here and share your thoughts.

Wednesday
Sep032014

Display Technology News Roundup 9.3.2014

Image via Fast Company

Could displays correct your vision? "New technology under development at the University of California-Berkeley and MIT automatically corrects people's vision defects without glasses. Plug a glasses prescription into the new software, and the system calculates how to display the image so it won't look blurry. Basically, by adjusting the light from each pixel on a device and then passing it through a tiny mesh attached to a monitor or phone screen, the system personalizes the image so it's crystal clear." via Fast Company

How will liquid crystal displays help reach exaFLOP speeds? "The Optalysys Optical Solver Supercomputer will initially offer 9 petaflops of compute power, increasing to 17.1 exaflops by 2020. 40 gigaFlops demonstration uses 500x500 pixels working 20 times per second. Each pixel does the work of about 8000 floating point operations in each of the cycles. Speeding up 427 million times to 17.1 exaFLOPS can be done with 500,000 X 500,000 pixels and 8550 cycles per second. They can use multiple LCD displays. ...There was no need to drive the refresh rate up for human displays but there will be a need for optical computing. 4K monitors usually have 8.3 million pixels (3180X2160). Thirty six thousand 4K monitors would get to 500K X 500 K." via Next Big Future

Is quantum dot the next step in LCD TV evolution? "Some brands have adopted quantum dots in their products, such as Amazon’s Kindle Fire HDX tablet PC and Sony’s Triluminos TV in 2013. However, quantum dots must surmount some hurdles to achieve wide usage. The first is the issue of Cadimium, which most quantum dots contain, and which is a regulated substance due to enviromental concerns. The second is the high price of quantum dot materials. Quantum dot makers are working on solving these issues. For example, Nanoco has produced Cadmium-free quantum dot materials, and other makers have secured a temporary exemption for Cadmium in products with quantum dot-based displays imported into Europe. Regarding price, many materials and films makers are entering the market, especially from Korea such as Samsung, LG, Sangbo, LMS, Hanwha and SKC-Haas. Increased competition will likely help to lower prices in the near future." via ECN Mag

Will superconducting quantum dots make LCD displays more vibrant? "Eric Nelson, who is also behind the development of the technology, says that it is called quantum dot enhancement film (QDEF), which enhances the colors of LCD screens. Nelson explains that current technology consumes a lot of energy to display bright colors on the LCD screen. However, QD efficiently provides high-color display and consumes far less energy when compared to other technologies. ..."They sandwiched the QDs between two polymer films, with the QDs embedded in an epoxy glue. Coatings on the film provide further protection and enhance the viewing experience," per ACS." via Tech Times

Who made the world's first touch-sensitive LCD basketball court? "Nike has created this huge touch-sensitive LCD basketball court for a training session with Kobe Bryant. The court has built-in motion sensors that track every player's movements individually. It can also display training exercises for them to follow and show statistics on performance. (Video)" via Gizmodo

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Could this new type of heads-up display redefine the augmented reality experience? "Andrew Maimone’s device is called a Pinlight Display and he has been working on this device in collaboration with three researchers from the University of North Carolina and two from Nvidia Research. The Pinlight Display does not rely on standard optical components. Instead, it utilizes an array of “pinlights”, which are essentially bright dots. Maimone explains that “A transparent display panel is placed between the pinlights and the eye to modulate the light and form the perceived image.” He added that "Since the light rays that hit each display pixel come from the same direction, they appear in focus without the use of lenses." (Video)" via Mobile Commerce Press

Will Quantum Dots Dominate Displays? "The QD Vision approach adds quantum dots to strips of blue LED edge lights around an LCD panel. Some of this light is converted to red and green, which is mixed by a light guide to create a high-quality white backlight for the LCD panel’s color subpixels. The Nanosys/3M approach places the QDEF film over the back of the panel, and then a blue LED backlight is applied (typically through edge lighting and a light guide). Some of the blue light is converted in the film layer to red and green light before reaching a subpixel. A new, third, approach is being developed by a number of researchers. This involves putting the quantum dots directly on the blue LED chip. This can simplify the optical and light-management requirements, but it subjects the quantum-dot material to higher operating temperatures that can decrease performance." via IEEE Spectrum

LEDs Made From ‘Wonder Material’ Perovskite "A hybrid form of perovskite – the same type of material which has recently been found to make highly efficient solar cells that could one day replace silicon – has been used to make low-cost, easily manufactured LEDs, potentially opening up a wide range of commercial applications in future, such as flexible color displays. This particular class of semiconducting perovskites have generated excitement in the solar cell field over the past several years, after Professor Henry Snaith’s group at Oxford University found them to be remarkably efficient at converting light to electricity. In just two short years, perovskite-based solar cells have reached efficiencies of nearly 20%, a level which took conventional silicon-based solar cells 20 years to reach." via redOrbit

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

TouchPico projector creates touchscreens anywhere. "The secret to the touch interaction is in the TouchPico stylus. The built-in infrared camera determines the touchscreen coordinates and relays that information to the projector at up to 40 frames per second. That’s fast enough to play some Fruit Ninja and score. This definitely takes interaction above and beyond the combination of laptop, projector and some gyroscopic mouse. The TouchPico can definitely up your professional game, too" via TechnologyTell

Can new automotive heads-up display be alternative to smartphone while driving? "Navdy wants to change the way we interact with our connected devices while driving altogether. It’s a device that can be mounted on any car’s dashboard and it provides a high-resolution heads-up display that helps you see the road behind it. Simpson says the technology is the same used by pilots when they land an airplane. By seeing what’s behind the display and still receiving information from it, the driver doesn’t take his or her eyes off the road, which should decrease the chances of an accident according to the NHTSA, which released guidelines last year to minimize in-driving distractions such as manual text entry on navigation systems." via TechCrunch

Spheree lets you watch animated images in full 3D "Spheree is the work of a team of researchers working together from the University of São Paulo, Brazil, and the University of British Columbia, Canada, and it's mesmerising to behold. Like its name suggests, it's in the shape of a translucent sphere; inside, the viewer can see animations and images that appear to float in the centre; as the viewer moves around, they can see other sides of the object as their perspective changes. And it's all based on optical illusion. Packed inside the Spheree are multiple mini-projectors, which shine the images onto the interior surface of the sphere. Special software designed by the team blends the projector images together for a single, seamless image." via CNET

5 Things CIOs Should Know About Digital Signage "4. Networks will be put to the test. An increasing percentage of digital signage content will be in ultra-high-definition (UHD), which could swamp an organization’s network bandwidth, particularly if the content is pulled from the cloud instead of being stored and played locally, says IHS analyst Sanju Khatri. Digital signage using UHD displays first appeared at McCarran International Airport in Las Vegas in 2013, and IHS predicts huge growth in UHD displays in the next few years." via CIO

Creating Next-Generation Holograms "Researchers from the University of Cambridge have developed a new method for making multi-colored holograms from a thin film of silver nanoparticles, which could greatly increase the storage capabilities of typical optical storage devices. ...Using a single thin layer of silver, Montelongo and his colleagues patterned colorful holograms containing 16 million nanoparticles per square millimeter. Each nanoparticle, approximately 1,000 times smaller than the width of a human hair, scatters light into different colors depending on its particular size and shape. The scattered light from each of the nanoparticles interacts and combines with all of the others to produce an image. The device can display different images when illuminated with a different color light, a property not seen before in a device of this type. Furthermore, when multiple light sources are shone simultaneously, a multi-color image is projected." via Controlled Environments

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

What does automotive HMI technology have in store for the near future? "There is much potential for in-car HMI, but we have yet to see a similar revolution in the UX and UI of the automotive industry. ...However, in the haste to get on-trend, car manufacturers have simply used screens to replicate what has been before, rather than taking an empathetic, intelligent approach. Skeuomorphism abounds, where physical buttons are replaced with look-alikes on a screen — familiarity is retained, but at the expense of tactile feedback. Current touchscreen HMIs are often simply ill-considered re-appropriated solutions developed for completely different contexts (which we will discuss later in the series)." via ITProPortal

Is 4K the next flat panel display revolution, or another gimmick? "While 3D may not have stuck around, now every film is projected in 4K. However, there are circumstances when the benefit of 4K can’t be fully utilized, and it has to do with viewing distance. To perceive the full benefit of a 4K resolution, the human eye needs to be at a certain distance from the screen, depending on the size of the screen. This is also true for 1080p over 720p. "In general, from an integrators perspective, we try to look at what the viewing distance or the vieiwing angle of the folks involved might be," says Mike Hancock, Vice President at MechDyne Corporation. "Flat panels, except for some of the really extreme large-sized ones, really only work good for rooms that are less than 20 feet."" via CorporateTechDecisions

Foldable, Bendable And Bright: The Future Of Displays "Micro transfer printing (µTP) is a method of, essentially, using a type of rubber stamp to pick up very thin strips of semiconductor material (as the “ink”) and place it somewhere else by “stamping” it. The advantage of this technique is that it allows you to put high performance semiconductor elements (such as gallium nitride (GaN)) onto substrates where they wouldn’t normally be compatible (like plastic). And you can place the stamp over and over thereby creating large areas of arbitrary shapes out of otherwise small, high performance components—in ways that are impossible or infeasible with traditional semiconductor manufacturing processes. Prof. John Rogers describes in the Science paper making displays out of micro-LEDs using transfer printing. The micro-LED displays had great battery life, were very bright and, due to the nature of µTP, could be made at low cost. The trifecta of low cost, good battery life and a scalable manufacturing platform while maintaining excellent performance comprises the display industry equivalent of winning eight gold medals in the same Olympic games. It’s a big deal, and Rogers may have delivered it." via Forbes

New automotive head-up display could help drivers avoid collisions in fog "The head-up display (HUD) is the work of Professor Vassilis Charissis and his team, based in the Virtual Reality and Simulation Laboratory (VRS Lab) within the School of Engineering and Built Environment. The display has been developed and evaluated in a 3D driving simulator, which allows drivers to navigate a perfectly recreated stretch of the M8, M74 and M80 in a choice of conditions. One of the options lets the driver tackle the motorways in dense fog, before giving them the chance to drive the same stretch again using the head-up display. When initiated, the windscreen of the car highlights where other vehicles are on the motorway within a 400-metre range and even lets the driver know when it’s safe to change lanes." via FleetNews

A Vision of Future Displays "According to Brown Elliott, Samsung has not used even half the IP they have developed and will need some time to roll out what is already possible for the next few years. But Samsung’s loss could be someone’s gain. As I said in the beginning, Brown Elliott has a vision of the display industry in 10-15 years. The way she sees it, light field displays and light field imaging devices will merge in this time period. That means a clear sheet of glass (or plastic) will be both camera and display. With a light field display, a lens is placed above a number of pixels that can provide “views” from many directions. Current light field displays and imagers are always pixel limited so the resulting images are typically 50-200x lower resolution than the underlying display resolution." via Display Central

What did you think about today's news? Leave a comment here and share your thoughts.