FREE

Subscribe to the display technology news roundups. You can also post your own content in the open section.

Display Industry News Roundups
Delivered via email

Twitter

Entries in iPhone (12)

Thursday
Dec292016

Display Technology News Roundup 12.29.2016

Image via First Post

Display Alliance is sponsored by Smarter Glass ( www.smarterglass.com ) , a leading distributor and solutions provider with nearly 15 years specializing in the global LCD display industry and PCAP touchscreens. This blog is an open resource for the display industry and welcomes content and sponsorship from readers. Contact us to discuss how we can work together on Display Alliance. For display panels, visit the Smarter Glass display database to search and compare thousands of panels side-by-side.

Apple, Google and Microsoft invest in LG’s foldable display technology " The three biggies of the tech world — Apple, Google and Microsoft — have reportedly partnered with LG for the development of fold-out display technology. These foldable displays will not even enter production till 2018, so you can forget about those dreams of playing with a flexible phone any time soon. " via First Post

Chinese panel makers top over 1M units in quarterly shipments for AMOLED smartphone displays " Chinese panel manufacturers shipped more than one million AMOLED (active-matrix organic light-emitting diode) smartphone displays for the first time in the third quarter of 2016. While the Chinese makers only make up less than 2 percent of the AMOLED smartphone panel market in terms of shipments, hitting the one million unit mark in a quarter shows significant improvements " via Electro IQ

iPhone 8’s OLED display may be best ever " It seems that all the ducks are lining up for an iPhone 8 next year (or in 2018) that will definitely sport an OLED screen rather than an LCD one. At least that seems to be the atmosphere among component suppliers that are girding up their loins for a drought in the coming months until Apple starts the engines for the 2017 iPhone model. " via Slash Gear

This electronic diffusion panel could light up the photography lighting market Traditional diffusers soften the light, reducing the darkness of the shadows. Swapping out the entire diffuser or adding gels will change how intense that softening effect is, but with Active Diffusion, diffusion is adjusted at the press of a button — err, rather, the turn of a dial. via Digital Trends

Rivals Samsung and LG head toward an unlikely alliance " SEOUL A possible partnership between longtime rivals Samsung Electronics and LG group could mark a new chapter in South Korean industry and spell trouble for Japanese electronics companies. " via Nikkei

Samsung’s next launch could be smartwatch with foldable display The South Korea tech giant Samsung is already rumoured to unveil foldable smartphones next year, and now it is said to be working on smartwatch with foldable display as well. via Deccan Chronicle

Minuscule amounts of impurities in vacuum greatly affecting OLED lifetime " Reproducibility is a necessity for science but has often eluded researchers studying the lifetime of organic light-emitting diodes (OLEDs). Recent research from Japan sheds new light on why: impurities present in the vacuum chamber during fabrication but in amounts so small that they are easily overlooked. " via Science Daily

Synaptics, Incorporated Talks OLED Versus LCD Tech " Most of the smartphones shipped today incorporate liquid crystal displays (LCDs). However, there has been a trend toward displays using a different technology called organic light emitting diodes (OLEDs) at the high end of the smartphone market. " via Fool

Sharp To Stop Providing LCD Panels To Samsung Starting Next Year: Report " Samsung has long outsourced a sizable percentage of its liquid crystal display (LCD) panels from sharp, but this may come to a halt soon, according to reports. Sharp has reportedly given Samsung a heads-up that its supply of LCD panels for the South Korean electronics company will stop beginning next year. " via Tech Times

What did you think about today's news? Leave a comment here and share your thoughts.

Monday
Sep212015

Display Technology News Roundup 9.21.2015

Image via Honeywell

How Display Technology Transforms Control Rooms "Regardless of the size of the display, ease of use is a key design factor. Operators are being asked to control far more pieces of equipment, and many of them are complex machines that run at far higher speeds than their predecessors. That means operators must be able to understand and analyze a lot of information. "The amount of data available today is an order of magnitude different than several years ago," Scott says. "We’ve moved to graphics, but a human’s visual awareness to see everything and the amount of information people can process hasn’t changed. Going forward, HMIs need to provide better information and keep the operator in the loop so they truly know what’s going on. When something goes off the rails, they need to know what steps to take." Many HMIs are being designed to help operators focus in on problems. And when problems occur, they’re providing information that helps operators know what to do to rectify the situation." via Automation World

Apple 3D Touch – the iPhone 6s reboots multitouch "Apple revealed the iPhone 6s and iPhone 6s Plus, and along with them a new sort of multitouch: 3D Touch. This system has Jony Ive saying that "tapping, swiping, and pinching have forever changed the way we interact with our digital world" - now it's time for Peek and Pop. This is what you might recognize as a technology called Force Touch, but here Apple is suggesting it's different enough from previous iterations that it'll be called something different: 3D Touch. According to Ive, "you can dip in and out of where you are, without losing sense of your context." This system has a light press for one action and a deep press for another. To see and sense these touches, the iPhone 6s and iPhone 6s Plus works with capacitive sensors integrated into the backlight of the phone's display." via SlashGear

The Smart UI Design Behind Apple’s Frictionless 3D Touch "You could think of 3D touch as a right-click for a touchscreen. It’s a gesture that unearths a vast amount of extra information and functionality with very little effort. To make sense of this new form of interaction, Apple has given different types of presses playful nicknames—peek and pop—that fit neatly into the vocabulary we already understand with swipe, tap and pinch. Peek and pop have essentially turned the iPhone operating system into nesting dolls of information. Press on the screen a little harder than usual and you’ll experience peek—a preview of information like emails, directions, or photos. Press harder yet and you’ll “pop” into that information deeper, navigating directly to the app itself. “It isn’t really a new gesture, just an extension of one you already know very well,” explains Tobias van Schnieder, lead designer at Spotify. ...True 3D touch doesn’t feel essential in the way that the first generation of multi-touch interactions do today. It might not for a while." via Wired

Profit Margins for Large-Area Thin Film Transistor Liquid Crystal Displays to Drop ""Even with recent price declines, many large panel sizes currently sell at marginal profits," Annis said "At least for now, panel makers have decided to keep utilization high and minimize overhead costs, in order to chase as much profit as possible while they are still able to. The downside to this strategy is that panel inventories at set-makers have ballooned, widening the gap between TV panel shipments and TV set shipments." As this excess inventory is sold down, panel prices are also expected to decline rapidly. Large-area display profitability will likely follow the same trajectory. At the same time, a substantial number of new eighth-generation (Gen 8) factories are currently ramping up production. Dedicated capacity for large-area displays will grow at a rate of 6 percent in 2015 and 8 percent in 2016, the highest rates in several years." via I-Connect007

Displays for a New Generation of Electronics "Whether the display serves a large-screen TV, a smartphone, or a wearable device, power consumption plays a key role in the design process. The issue of energy efficiency poses a problem for OLEDs that rely on fluorescent emission. This technology converts only 25% of the excitonic energy used to create light, with the remaining 75% lost as heat. In the late 1990s, Princeton University and the University of Southern California found that the use of soluble phosphorescent small-molecule materials improved the energy-to-light conversion efficiency to nearly 100%. UDC has since refined and advanced phosphorescent OLED (PHOLED) technology. In addition to achieving greater energy efficiency, PHOLED technology reduces the display’s operating temperature considerably. Because higher temperatures accelerate degradation of the organic materials, the heat reduction extends the life of the PHOLED and reduces the amount of air conditioning required to keep the display cool." via IHS Electronics 360

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Quantum dots move into monitors "According to the Massachusetts Institute of Technology (MIT) spin-out QD Vision, upon whose “ColorIQ” technology the displays are based, that represented the world’s first quantum dot monitor. ...When illuminated by the blue LEDs that typically feature in LCD backlights, the quantum dots act like a phosphor, generating light across the rest of the visible spectrum. The specific wavelength of that re-emitted light depends on the precise size of the quantum dot nanocrystals, and can be carefully controlled. According to the company, it means that its Color IQ optics emit “pure, finely-tuned colors”, enabling better color saturation and color rendering compared with standard LCD screens. “Most LCD TVs available today offer size and definition at the expense of color, using a smaller color gamut that only achieves 60-70 percent of the NTSC standard,” claims the firm. “With Color IQ optics, LCD TVs and other displays can achieve 100 percent of the standard.”" via Optics.org

Military display technology lets commander 'see through' armour "Developed by defence firm BAE Systems, the BattleView 360 is a digital mapping system that uses cameras and sensors to track the positions of all surrounding features of interest in both two and three-dimensional modes. A specially designed headset can be synced to vehicle cameras to allow commanders to 'see through' their vehicles in both visual and infra-red in real-time, or alternatively the feed can be transmitted to a touch-screen display. The live-feed will be overlaid with information from other vehicle systems and the touch-screen display can be used to identify friendly and enemy forces, for route planning and to let the commander view the display of other crew members, such as the gunner." via E&T Magazine

Will the next big Samsung phone have a display screen that folds in half? "With Samsung's phone sales looking troubled these days, the company has been forced to differentiate its devices with features like dual-curved displays and the S Pen stylus. A phone with a foldable display could be exactly what Samsung needs to win back customers who have defected to cheaper Chinese devices or Apple's iPhones. A foldable display isn't without precedent. In 2008, Samsung showed off a prototype of a display that folds in half at The Society for Information Display (SID), an event that showcases innovative display technologies. You can see the prototype display in action in the video above. (Video)" via Mashable

Will in-cell touch displays for smartphones rise rapidly? "The share of in-cell and on-cell touch display solutions within the smartphone industry is rising fast, according to WitsView. With Japan panel makers as the leading adopter, the combined share of in-cell and on-cell solutions in the smartphone market is expected to hit 40.6% in 2015 and will likely reach 47.8% in 2016, as these technologies will subsequently gain support from other panel makers from South Korea, Taiwan and China. "In-cell technology began to attract the market's attention when Apple introduced it to the iPhone 5 series," said Boyce Fan, senior research manager for WitsView. "The technology gained additional momentum as Japan panel maker Japan Display (JDI) seized the opportunity to apply its hybrid in-cell solution to all of its high-end smartphone panels. Since then, JDI has aggressively promote this technology in China, raising both the reputation of in-cell displays in the high-end smartphone market and the panel maker's brand recognition."" via DigiTimes

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

What Is HDR (High Dynamic Range) Display Technology? "HDR-capable displays can read that information and show an image built from a wider gamut of color and brightness. Besides the wider range, HDR video simply contains more data to describe more steps in between the extremes. This means that very bright objects and very dark objects on the same screen can be shown very bright and very dark if the display supports it, with all of the necessary steps in between described in the signal and not synthesized by the image processor. To put it more simply, HDR content on HDR-compatible HDTVs can get brighter and darker at the same time, and show more shades of gray in between. Similarly, they can produce deeper and more vivid reds, greens, and blues, and show more shades in between. Deep shadows aren't simply black voids; more details can be seen in the darkness, while the picture stays very dark. Bright shots aren't simply sunny, vivid pictures; fine details in the brightest surfaces remain clear. Vivid objects aren't simply saturated; more shades of colors can be seen." via PC Magazine

Exploring Virtual Reality Display Technology in the Military Industry "The reason why I am reporting this here is the appearance of VR & AR components directly into the military mix, and also the latest technology seen here that is also about to once again cross the divide and make itself felt in the consumer sector. Regarding home grown technology from the defence industry (that we are able to talk about publicly), the big buzz at the show was the Striker II. Developed by BAE Systems, and called by the company most advanced fighter pilot helmet, to evaluate its digital night vision capability and target awareness. This space age Head-Mounted Display (HMD) (the defence sector coining the phrase originally) utilizes cutting-edge tracking system that ensures the pilot’s exact head position and the aircraft computer system are continuously in syn. While the digital night vision is projected into the pilot’s view, along with representations of target and aircraft instrumental data." via Road to VR

How Display Technology Is Going Organic "A third challenge involves cost. OLED displays are made using a fine metal mask to create the pixel pattern. In this approach, a thin sheet of metal with holes in it is placed over the substrate, and the organic molecules travel through the holes before ending up on the substrate. That is cost-effective for small displays, which helps explain why OLEDs have done so well in mobile applications. When the same technology is scaled up for a large display or television, however, drawbacks appear. It becomes difficult to make the masks and to maintain the proper tolerance. Also, during processing, the masks have to be cleaned periodically. What’s more, the mask must be precisely positioned from one pass to another so that the different colors found in each pixel properly align to each other. Partly as a result of such factors, today a large OLED TV can be many times the cost of a similarly sized LCD TV." via Photonics Spectra

How Is Clothing Being Turned into Information Displays? "Researchers from Holst Centre (set up by TNO and imec), imec and CMST, imec’s associated lab at Ghent University, have demonstrated the world’s first stretchable and conformable thin-film transistor (TFT) driven LED display laminated into textiles. This paves the way to wearable displays in clothing providing users with feedback. ...The conformable display is very thin and mechanically stretchable. A fine-grain version of the proven meander interconnect technology was developed by the CMST lab at Ghent University and Holst Centre to link standard (rigid) LEDs into a flexible and stretchable display. The LED displays are fabricated on a polyimide substrate and encapsulated in rubber, allowing the displays to be laminated in to textiles that can be washed." via Solid State Technology

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

NASA’s Avionic Cockpit Display Helps Mitigate Supersonic Booms "While low-boom supersonic aircraft will minimize the intensity and occurrence of sonic booms, atmospheric physics still dictate that shock waves will reach the ground in some form, no matter how well the vehicle is designed. The question is whether the location and strength of these waves can be predicted and, if so, can the information be relayed to the crew in time for them to do something about it?" via Aviation Week

Car makers going big on 3D touch control, says UK sensor firm "The company said it is seeing its QTC force touch sensors being integrated under in-car surfaces such as plastics, rubbers, wood, leather, metals and glass. Neil Jarvie, Peratech sales v-p, says that the capability to incorporate pressure sensing that capacitive touch sensing does not provide is important for Tier 1 automotive companies. The matrix sensors are designed to track multiple touches for position on X and Y axes and independent pressure sensing along the Z-axis. According to Jarvie, this allows designers to reduce button count in the centre stack, steering wheel and other cockpit surfaces." via ElectronicsWeekly

What is the challenge of parasitic extraction for touchscreen designs? "One of the major verification challenges for touchscreens is parasitic extraction. Because a finger or touch tool is essentially a big conductor sitting on top of the screen, a 3D field solver extraction tool is typically required to achieve the desired accuracy necessary to capture the subtle effect at the touch point. However, most field solvers do not have the capacity to evaluate an entire design in a timely manner, making them unacceptable for production design. Capacity in this instance means the ability of the extraction tool to run on big designs to completion. For example, if an extraction tool runs on a design for three days and generates accurate results, it does not suffer from a capacity issue, but it may suffer from a performance issue. If another extraction tool runs on that same design, but never finishes, it has a capacity issue, which means the algorithm inside the tool is not well-suited for large designs. Capacity is simply a metric, like accuracy and performance. With field solvers, capacity is typically an issue because of the resources required to do the extensive computational work. What is needed is an extraction tool that can deliver field solver accuracy with a satisfactory turnaround time for production designs." via EDN

Here's why Apple made the touchscreen stylus that Steve Jobs hated "When Apple marketing chief Phil Schiller announced that the company's stylus for new iPad Pro would be called Pencil, the crowd audibly laughed in unison. On the surface, it was because it played into the stereotype that Apple lays claim to everyday inspirations. But on a deeper level it traces back to former CEO Steve Jobs, who famously said in 2007 at the initial iPhone reveal, "Who wants a stylus? You have to get em', put em' away. You lose them. Yuck." Yet it turns out that eight years later, some people do want a stylus — and they've improved substantially alongside the devices with which they're used. ...Steve Jobs didn't envision the iPhone 1 being a viable tool for graphic designers and illustrators, people who've long used pro-grade products from companies like Wacom. But now, the Pencil is an option for those who want to use the iPad Pro as if it were a sheet a paper and the stylus as if it were — wait for it — a real pencil. Apple has designed the pen so that it has little to no latency. It can draw thicker lines with applied pressure and orient its toolset to whether you're tilting the pen, for shading, or dragging it along the surface to draw lines or form letters. These selling points make it clear that the Pencil is not designed to help you clean out your inbox." via The Verge

This Head-Up Display Helmet Will Make F-35 Pilots Missile-Slinging Cyborgs "After years of delays and more than $60 billion dropped on development, the jet is finally just about ready, and it’s bringing some pretty slick tech along with it—including a brand new helmet that will let the pilot see through the plane, aim missiles with his eyeballs, and keep an eye on key data no matter where he turns his head. The F-35 Gen III Helmet Mounted Display System, developed by a joint venture led by defense contractor Rockwell Collins, takes the head-up display (HUD) usually projected onto on a piece of glass at the front of the cockpit, and puts it on the helmet. That means the pilot’s always got it in his field of vision, and can see useful data like the horizon, airspeed, altitude, and weapons status wherever he’s looking. More than keeping the pilot’s cranium safe from smacking against the canopy, and mounting stuff like a sun visor and oxygen mask, the Gen III helmet is designed to improve the pilot’s situational awareness. At engagement altitudes of a few thousand feet and speeds of up to Mach 1.6, it’s crucial to know what’s going on ahead of, to the side of, above, and below and the jet." via Wired

Virtual Reality's Pursuit Of Presence and True Immersion "Depending on where an object lies in our visual periphery, our sight of it may be less sensitive to fine detail (or high-resolution), but more aware of latency and rapid changes. Research into VR must account for both this requirement of highly precise rendering in particular regions of the visual spectrum and the low-latency necessities of generating the entire view-scape. What does this all mean? Well, an immersive display capable of outputting a human eye’s expected resolution of 60 ppd requires an incredible 7.2K of horizontal and 8.1K of vertical pixels per eye — or 116.4 million pixels (megapixels) total or 16k resolution! Current displays, such as the latest home entertainment systems and VR technology, are capable of up to “only” 4K resolutions. As VR display research advances, though, 16K per-eye resolutions will likely be achievable within a few years. But what about latency? After all, low latency is absolutely essential for true immersion, and arguably is the most important performance metric for VR." via TechCrunch

New system for deposition of OLED barrier films "AIXTRON SE a worldwide leading provider of deposition equipment to the semiconductor industry, has sold the first Optacap-200 encapsulation tool to a major Asian display manufacturer. The standalone R&D system that handles substrate sizes of 200 mm x 200 mm was ordered in the third quarter 2015 and is scheduled for delivery in the first quarter 2016. The innovative Optacap plasma enhanced chemical vapor deposition (PECVD) technology enables the deposition of highly flexible and effective barrier films for thin-film encapsulation of OLED display, OLED lighting, organic photovoltaic and flexible electronic devices." via Printed Electronics World

Introducing an Automultiscopic Display "A team of researchers at the USC Institute for Creative Technologies (Playa Vista, CA) have developed a system that captures videos in a unique way and then presents full sized images of people on a so-called 'automultiscopic' display. The term automultiscopic is used to define a display that allows multiple users to view 3D content simultaneously, without the need for glasses. A recent publication by the team is entitled 'Creating a life-sized automultiscopic Morgan Spurlock for CNNs "Inside Man."' A copy of this brief article is available on-line and can be found here. The production of an automultiscopic image begins with capturing video of the subject. Done while the subject is uniformly bathed with intensely bright light, the capture is accomplished using 30 Panasonic X900MK 60p consumer cameras spaced over 180°." via DisplayDaily

Projected Capacitive Touch Screen Technology and Borders "The size of a PCAP sensor is directly related to the size of the display active area and the borders needed to have a linearly sensitive, reliable sensor that can be manufactured efficiently. Many different options are available for hosting the conductive traces that make up the bulk of that border, all with their own pros, cons and costs. Ideally, the sensor and the display would have the same active and outer areas, but as display borders get narrower, the touch sensor industry is striving to keep pace. By far the most common type of projected capacitive touch screen traces is the printed metal trace, usually Ag (silver). There are three main methods for creating these traces: printing, laser ablation and sputter deposition. These are listed in increasing trace density and price. The printing option is the cheapest and fastest method, but the traces are limited by the screen or ink deposition resolution." via TouchInternational

What did you think about today's news? Leave a comment here and share your thoughts.

Tuesday
Sep302014

Display Technology News Roundup 9.30.2014

Image via Flickr / That Hartford Guy

This 1980s General Motors Touchscreen Was Decades Ahead Of Its Time "For most drivers, the idea of a touchscreen that controls all of a car's functions is sci-fi that only recently became reality. However, in 1989 General Motors equipped its Oldsmobile Toronado Trofeo with a touchscreen system that was decades ahead of its time. Called the Visual Information Center (VIC), the touchscreen gave the driver access to everything from the radio to engine management data. (Video)" via Business Insider

How to build a real-time holographic display using doped liquid crystals "There are two common types of 3D display based on the principles of stereopsis (perception of depth). One exploits binocular parallax (the displacement in the apparent position of an object viewed along two lines of site), and the other makes use of light-field reconstruction. However, the ultimate goal is holographic display, which provides the most realistic 3D images of objects or scenes. This is because it can reconstruct both intensity and phase information, enabling the perception of light as it would actually be scattered by a real object, without the observer needing special eyewear. ...However, to show real-time, dynamic 3D images, there is a limited choice of suitable photorefractive materials with the necessary fast response and high modulation index to achieve a reasonable diffraction efficiency. This presents challenges in the choice of materials, devices, and system structures. Here we present a real-time holographic display featuring a liquid crystal (LC) doped with an azo (synthetic) dye. This material enables a video-rate display, since we can refresh each hologram on the order of several milliseconds." via SPIE

How are color-changing displays inspired by squids advancing LCD tech? "Scientists have long marveled at the squid's ability to sense the color of its surroundings, and then instantaneously change its own skin coloring in order to blend in. To that end, a number of projects have attempted to create man-made materials that are similarly able to change color on demand. One of the latest studies, being led by associate professor Stephan Link at Rice University, may ultimately result in improved LCD displays. The technology developed by the team currently consists of a prototype full-color display, which incorporates five-micron-square pixels made up of arrays of tiny aluminum nanorods to produce vivid red, green and blue-based colors. By electronically tuning both the length of the nanorods and the spacing between them, it's possible to alter the manner in which they reflect light – this in turn changes each pixel's perceived color." via Gizmag

Is the iPhone 6 Plus Display the Best Ever? "In its latest series of lab tests and measurements, DisplayMate called the iPhone 6 Plus the "best performing smartphone LCD display that we have ever tested." Specifically, the new 5.5-inch iPhone reached or broke records in a variety of areas, including highest peak brightness, lowest screen reflectance, highest contrast ratio, highest contrast rating in ambient light, most accurate intensity scale and gamma and most accurate image contrast. ...President Raymond Soneira wrote of the iPhone 6 Plus. "The iPhone 6 Plus is only the second Smartphone display (LCD or OLED) to ever get all Green (Very Good to Excellent) Ratings in all test and measurement categories (except for Brightness variation with Viewing Angle, which is the case for all LCDs) since we started the Display Technology Shoot-Out article series in 2006, an impressive achievement for a display. The iPhone 6 Plus has raised the bar for top LCD display performance up by a notch."" via CNET

Everything you ever wanted to know about display screen technology "On a glossier screen, less diffusion takes place, so the image appears sharper. Glossy displays may also be coated with an anti-glare finish to reduce distracting reflections; this means dark areas aren’t illuminated by ambient light as much as they would be with a matte screen, so the contrast of the screen appears to be greater. Choosing a screen type is a matter of personal choice as much as it is influenced by your environment and/or lighting conditions. As a rule of thumb, a matte screen makes sense for regular office work, or for a laptop that you intend to use while out and about; for games and movies, the vibrant colour and punchy contrast of a glossy screen may be more important – especially if the room lights will be darker." via PC & Tech Authority

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Blue phosporescent OLED lifetime increased by 10X "In a step that could lead to longer battery life in smartphones and lower power consumption for large-screen televisions, researchers at the University of Michigan have extended the lifetime of blue organic light emitting diodes by a factor of 10. Blue OLEDs are one of a trio of colors used in OLED displays such as smartphone screens and high-end TVs. The improvement means that the efficiencies of blue OLEDs in these devices could jump from about 5 percent to 20 percent or better in the near future. ...In collaboration with researchers at Universal Display Corp. in 2008, Forrest's group proposed an explanation for why blue PHOLEDs' lives are short. The team showed that the high energies required to produce blue light are more damaging when the brightness is increased to levels needed for displays or lighting. This is because a concentration of energy on one molecule can combine with that on a neighbor, and the total energy is enough to break up one of the molecules. It's less of a problem in green- and red-emitting PHOLEDs because it takes lower energies to make these colors of light." via University of Michigan

Is the display industry headed for a boom? "Foreign institutional investment analysts yesterday expressed an upbeat outlook on the global display panel sector, expecting the arrival of a rare boom unseen in recent years in the latter half of this year. According to James Kim, an analyst at Nomura Securities, expected windfall for the sector in the latter half of this year is attributed to expected constraints in production capacity that may persist for the next few years, and anticipated surge in demand for larger-sized LCD TV sets. Kim noted that it is difficult for larger-sized LCD display panel makers to initiate production capacity expansion currently amid an ongoing transition towards producing OLED panels. In addition, numerous panel makers have sustained tremendous losses since 2010, following a period of oversupply in the global markets, leaving them with little room to increase capital expenditure." via The China Post

Sharp aims to mass-produce new generation of display panels by 2017 "Qualcomm and Sharp said the new type of panel, called MEMS-IGZO after their respective display technologies, uses less energy and can withstand harsher temperatures than the liquid crystal displays (LCD) used in most smartphones and tablets. "LCD is really hitting its limits in a lot of things. We can go brighter and this is the first generation of this technology," said Greg Heinzinger, senior vice president of Qualcomm's technology licensing division and president of Pixtronix, at a briefing at Sharp's Tokyo office on Friday. ...Sharp said it will market the new technology to automakers, and makers of industrial devices, smartphones and tablets, and aims to start mass-production in 2017." via The Star

Are touchscreens going to be obsolete? "Although it’s too early to predict the end of an era for touch screens, it was interesting to hear Tetsuya Hayashi, one of the keynote speakers at Touch Taiwan, talking about development activities around post-touch screen technology in Japan. Hayashi, deputy director of Nikkei BP ICT Innovation Research Institute, illustrated the future of display technology as “ambient,” “free-form,” and “wearable.” Images, he foresaw, will be projected on any surface or in the air, instead of being constrained to a rigid, bulky box." via EE Times

Intel demonstrates a laptop with a second E Ink screen on the lid "The Asus Taichi line of notebooks feature screens on both sides of the lid — so when the lid is closed you find yourself holding a tablet. When it’s open, you have a laptop with a screen facing you and a second screen facing away. Now Intel is showing off a prototype of a laptop with a similar layout. There’s a screen on either side of the lid. The difference is the one that’s on top of the lid is a small, low power E Ink display. (Video)" via Liliputing

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Could Display Technologies Provide Camoflouge and Other Military Technologies? "Digital electronic display technologies, such as light emitting diode (LED), liquid crystal display (LCD), plasma, and digital projection, have advanced and proliferated rapidly in recent years. This has caused unit cost to decrease and quality and capability to increase. These technologies are no longer just for watching television or working on a computer. Massive LED screens are common on digital billboards, while nearly half of all Americans carry high resolution displays in their pockets in the form of smartphones. Displays are even beginning to break out of their traditional rectangular shape. LEDs can now be manufactured so that panels can be flexibly conformed to curved or irregular surfaces. Projection mapping techniques enable projectors to display images on three dimensional surfaces. All of these technologies have the potential to revolutionize the way the Navy operates for pennies on the dollar." via CIMSEC

How does an optical engine remove sharp pixels in displays? "Lemoptix has designed what it calls the world's smallest optical engine—25mm x 25mm x 12mm—and has worked to "despeckle" displays using proprietary technology. Without despeckling, a laser-driven display looks pixelised, with overly sharp pixels surrounded by obvious circles of black. Lemoptix has not revealed all the details of its despeckling algorithm, but it did reveal enough to win the Photonics West best paper award. In addition, Lemoptix has been to solve application problems to make its Hamamatsu modules easier for designers to use. For instance, it has built demonstration applications for heads-up displays on automobile windshields that work even in the brightest ambient light. It has also built 3D scanning solutions using structured light, embedded projectors for smartphones, and wearable displays for augmented-reality smart glasses." via EET India

TinyScreen thumb-sized display supports full color "Often the size of the screen controls how large your project is overall, and if you want small, TinyScreen is the ticket. TinyScreen is the size of your thumb and still supports full color. There are a myriad of uses for TinyScreen from homemade wearables to smart glasses to just about anything that can benefit from a small display. The screen uses OLED technology with 96 x 96 resolution, 16-bit color, and is designed to show data from the TinyDuino platform." via SlashGear

A 3D Display You Can Manipulate and Remotely Control "inForm is essentially a field of embedded pins that rise and fall independently to form shapes using information relayed by a computer. The creators of inForm describe it as a Dynamic Shape Display that can display real-time 3D information as well as receive input from users. Developed by MIT Media Lab‘s Tangible Media Group, it is able to display 3D information in real-time and in a more accurate and interactive manner compared to the flat rendering often created by computer user interface." via psfk

What's the difference between digital signage and touchscreen kiosks? "The most important difference between digital signage and touchscreen kiosks can be summed up in a single word: interaction. Enticing a visitor to interact with your message is a universal business goal. A touchscreen kiosk will provide you with all that digital signage can offer, but with an added layer of engagement. … Touchscreen devices are typically more expensive than equivalent-size digital signage monitors. In addition, the deployment of an interactive touchscreen kiosk requires a more in-depth design and development phase, so the software pricing can also be higher." via Digital Signage Today

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

How Could Virtual Reality Displays Transform Education? Oculus VR Interview "We showed the folks from the Smithsonian, we showed folks from a number of different industries—the automobile industry, the architecture industry—we’ve shown people the latest prototype, and they’ve gotten incredibly excited about the visualization aspect. Imagine, you could scan in everything in the Smithsonian—they have 130 million objects. Let’s get 10 percent of them or 20 percent of them. You could put on a pair of … sunglasses, and with those sunglasses you could see those objects and you could look around and you could see it so well and so clearly, and it would track so perfectly that your brain would believe it was really right in front of you. The next step past that is when you have shared space, and not only do you believe that this object is right there in front of me, but I look around and I see other people just like we see each other now, and I really, truly believe that you’re right in front of me. We can look at each others’ eyes. If you look down at something, I can look down at the same time. And it’s every bit as good as this. And if we can make virtual reality every bit as good as real reality in terms of communications and the sense of shared presence with others, you can now educate people in virtual classrooms, you can now educate people with virtual objects, and we can all be in a classroom together [virtually], we can all be present, we can have relationships and communication that are just as good as the real classroom." via The Chronicle of Higher Education

The first functional graphene-based flexible display has been produced "Graphene has been called a “magical” material that may hold the key to better electronic gadgets, both when it comes to device durability but also electrical abilities, as various research teams are figuring new ways to put the astonishing material to good use. … Researchers from the Cambridge Graphene Center and Plastic Logic managed to build the first such product, a flexible display that could equip a variety of gadgets in the future. “The new prototype is an active matrix electrophoretic display, similar to the screens used in today’s e-readers, except it is made of flexible plastic instead of glass. In contrast to conventional displays, the pixel electronics, or backplane, of this display includes a solution-processed graphene electrode, which replaces the sputtered metal electrode layer within Plastic Logic’s conventional devices, bringing product and process benefits,” a University of Cambridge report says." (Video)” via BGR

How Does New Augmented Reality Industrial Display Hardhat Protect Workers? "The DAQRI Smart Helmet has a hands-free wearable HD display with fully transparent optics that provide always-on functionality readable in both low light and bright conditions. It is described as “an elegant fusion of the most sophisticated display and sensor hardware with next-generation computer vision.” ...The Smart Helmet’s ‘True 4D’ display will enable organizations to provide intuitive instructions to their workforce. This should ensure that workers understand processes more quickly, spend less time on each step, and make fewer errors. (Video)" via psfk

The Story of Pixel Density and Touch Interface "It’s clear that the reason Apple chose precise scaling factor has been driven by the intention to produce crisp design with no compromise on antialiased UI elements rendering. It is often seen when you have a lot of 1pt stroke line in your design. Apple thinks for the developers and for the consumers too. From its original iPhone inception, Apple has been adamantly guarding how its User Interface will be rendered on user devices. The original iPhone to its iPhone 4S had exactly the same effective resolution of 320pt by 480pt. We praised Apple’s UI workmanship and its call on attention to detail. There is an interesting case of iPhone 6+ where Apple choose not to continue with the pixel-perfect scaling tradition. Read it here: The Curious Case of iPhone 6+ 1080p Display" via Medium

Should Touchscreens Be Built Into Every Desktop Design? "Like tablets before them, the ergonomics of these hybrid gizmos demand UI conventions that depart from desktop layouts of similar screen size. The hybrids not only need big touch targets to accommodate clumsy fingers, but they also need controls and navigation conveniently placed where hands naturally come to rest. Designing for touch introduces elements of industrial design: physical comfort and ease are critical considerations. Unfortunately, the top-of-screen navigation and menus of traditional desktop layouts are outright hostile to hybrid ergonomics. Tried-and-true desktop conventions have to change to make room for fingers and thumbs. For now at least, the solution is not just a matter of designing separate interfaces for touch and non-touch gadgets. That won’t fly, because as designers (and especially web designers) we often don’t have enough information about the device. After poking at this problem for a few weeks, my conclusion is: every desktop UI should be designed for touch now. When any desktop machine could have a touch interface, we have to proceed as if they all do. Walk with me." via Global Moxie

What did you think about today's news? Leave a comment here and share your thoughts.

Wednesday
Jul162014

Display Technology News Roundup 7.16.2014

Image via LG Display

LG Unveils Flexible Display That Can Be Rolled Up Like A Piece Of Paper "LG’s display division yesterday announced two new types of panels, a rollable 18-inch OLED panel and an 18-inch transparent OLED panel. ...Instead of using plastic to achieve this level of flexibility, LG said the panel is made out of a "high molecular substance-based polyime film". The transparent panel, as LG explained, has 30% transmittance, which is significantly higher than the 10% transmittance in existing transparent LCD panels. LG says that it achieved this by adopting the company’s transparent pixel design technology and incorporating it into the new display." via Forbes

How Epson Keeps Innovating With R&D "Projector technology too has developed step by step. The 3LCD technology that powers projectors used for offices, education and homes had its origins in 1977 when Epson started to develop the active-matrix LCD chips. In 1982 it introduced the TV watch and later shifted to polysilicon TFT systems, that ironed out picture quality and size issues. In 1984, the company commercialised the world’s first pocket-sized colour TV, the ET-10. In 1989 Epson used 3 LCD technology for its first brand projector and since then High Temperature Polysilicon (HTPS) has been the key component of 3LCD projectors. Ask employees at Epson and they will tell you that R&D is the heart of their organisation. Consumers, for instance have been experiencing Epson products with diverse uses." via The Hindu Business Line

Where Does LG Display Manufacture Its Innovative Technology? "I am at the largest screen factory in the world - LG Display's Paju Complex, in South Korea, on an extensive tour. ...In a bright white space-age showroom, Epic Kim shows us possibilities that OLED opens up. Some of these products have already made it to the market - just. LG sells a inwardly curving OLED TV, which is much more impressive than it sounds, and even a semi-flexible smartphone, named the G Flex. Other innovations have not found a product yet - take the insanely high-resolution smartphone screen that is twice as sharp as an iPhone, the 3D TV that does not require glasses, or the fully transparent touchscreen, which I found the most exciting. Why hide the innards of your new smartphone? Why buy a TV when your whole window can show a movie? Why buy curtains when your window can become a black screen?" via The Age

‘Sensor Salon’ brings LCD screens, 3D-printed objects and sensors to fingernails "That’s the vision of students from the Art Center College of Design in Pasadena, Calif., who presented their “Sensor Salon” project at Microsoft today — explaining how they created a prototype salon that brought together experts in design and development to create made-to-order technology for a client’s nails. Technologies embedded in the nails included small programmable LCD screens, and 3D printed objects and charms. ...Other possibilities would include haptic feedback — sensors that would trigger small vibrations that could help people with bad habits such as smoking." via GeekWire

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

What Happened At SID Display Week? IDTechEx Summarizes the Show "The impact of the emergence of Chinese manufacturing was not overlooked this year during SID last month, with the opening keynote talk delivered by Wang Dongsheng, president and co-founder of BOE, the largest Chinese display manufacturer. With over 20,000 usable patents and 4,200 patent applications, BOE is in growth mode on a massive scale, with 35% of its products globally launched in 2013. The company is obviously looking to make significant profits from the juggernaut that is the display industry, with an accumulated investment of $260 billion since 1990. Wang Dongsheng though used the term during his keynote "The display industry is suffering from success", referring to its low profitability." via Printed Electronics World

How flexible, micro-thin displays could revolutionize liquid crystal technology "A new research study published in this week's journal of Nature has shown the proof of concept for using what are known as 'phase change materials' – materials that can rapidly switch between amorphous and crystalline states when heat or electrical charge is applied – as building blocks for a whole new generation of ultra-high resolution displays. ..."The main advantage of these displays is not only that they have ultra-high resolution, but also are solid state that can be put on highly flexible films," said team leader Harish Bhaskaran, a materials scientists at Oxford University in an interview with Yahoo Canada News. "Also, power consumption is low and in many respects it can retain the image until you go and change it, so no power is required when the image is static, unlike conventional screens that require refreshing," added Bhaskaran." via Yahoo! News

Why is Samsung the only one buying AMOLED displays? " ZDNet Korea did an interview with Samsung Display CEO Park Dong-Geun specifically on this topic, and he had a little more to say on it, specifically what Samsung Display is going to do about it. Park talked about Samsung’s current expansion into China and other markets where its devices are at saturation point, and would like to see expansion of its display division into these territories as well. Right now LCD is the most popular form of display on devices, particularly mobile ones, and Samsung wants to try to convince device manufacturers that AMOLED is the way to go, as they say it provides a richer user experience by giving the user better visuals. Right now they have to fight the fact that they are the largest consumer electronics company in the world, and as such many are likely choosing to support the underdog rather than the big dog." via AndroidHeadlines

How is Jaguar Land Rover enhancing the automotive display experience? "The car maker unveiled its 'Jaguar Virtual Windscreen' concept that uses the windscreen as a display to project information like racing line and braking guidance, ghost car racing and virtual cones. Jaguar Land Rover Research and Technology director Dr Wolfgang Epple said, "By presenting the highest quality imagery possible, a driver need only look at a display once. "Showing virtual images that allow the driver to accurately judge speed and distance will enable better decision-making and offer real benefits for every-day driving on the road, or the track." (Video)" via Automotive Business Review

How does new transparent touchscreen display work on both sides? "Their TransWall is not only transparent, but it can also receive input and display content on either side of its screen, plus it's capable of haptic feedback. The system is housed within a T-shaped frame that also incorporates two overhead-mounted projectors, which project visuals onto either side of the screen. That screen is made up of two sheets of plexiglass, with a clear holographic film sandwiched between them. Bordering those sheets are two rectangular infra-red touch sensor frames, one on either side. A surface transducer is also mounted in the plexiglass above the frames, plus microphones are integrated into each of them." via Gizmag

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Waterproof, glare-free phone screens invented "The team at The Institute for Photonic Sciences in Barcelona, in conjunction with Corning Incorporated (the makers of the tough Gorilla Glass adorning many of today's premium smartphones) developed a novel technique of "roughing" the glass surface without sacrificing transparency. ...This discovery has strong implications for the mobile industry, where similar effects can only be produced by polarising filters placed over the screen. But these filters can interfere with the capacitive touch interface of many smart screens, a problem Pruneri's team believes may not be the case with their "roughening" method." via Wired

takee Holographic Handset Disrupts Traditional Technology "After 10 years of research and development, takee holographic handsets are taking the lead in handset screen display technology, making a disruptive breakthrough in the field. ...Something of note is that the takee holographic handset is fundamentally different from Fire Phone handset recently released by Amazon. Fire Phone's display technology is not a naked-eye 3D display technology, but rather employs Dynamic Perspective 3D technology, in actuality a form of 2D display technology. In other words, what one is observing is a dynamic expression of a traditional 2D handset instead of a visual display of holographic technology. In this regard, the takee holographic handset outdoes competitors by jumping ahead one generation." via Consumer Electronics Net

How is the digital signage industry being threatened? ""The industry faces tough competition from ordinary consumer television products that are being used by commercial establishments instead of specially outfitted digital signage displays, and the result is a loss for the signage industry as sales go instead to consumer-type replacements." Digital signage panel manufacturers and set makers can capitalise on existing advantages offered by the technology. These include high-brightness displays of 1,000 to 1,500 nits without compromising display lifetimes; ultra-narrow bezel displays for data visualisation; ultra-high-definition displays in high-end applications such as architecture firms and medical operating theatres; and touch, gesture or embedded vision for segments like education, for use in interactive whiteboards." via InAVate

Is the iPhone 6 Sapphire Crystal Display Really Unbreakable? Watch the Test "In an effort to test just how durable the suppose 4.7-inch iPhone 6 panel is, Marques puts it through a serious of gruesome tests, first by stabbing it with a knife, and then with a set of keys. He goes at it pretty hard, too—harder than your average phone would see on a daily basis—and the panel is essentially left unscathed. Even the sharp knife is no match for the sapphire crystal, inflicting zero damage. It’s incredibly impressive. Say good-bye to screen protectors once and for all. (Video)" via TechnoBuffalo

Does display form factor matter? "The way I see it, Google Glass is an early shot at making the computer disappear, at making it hide in the furniture. The true ideal form factor is one that isn’t there at all. It’s just a pure human interface. No friction. ...But even screen size can be handled as a relative matter. Apparent screen size is a function of distance between the viewer’s eyes and the screen and its actual dimensions. A 13cm (5.1”) screen held 60cm (~2’) away takes up the same field of vision as a 130cm (51.2”) screen at 600cm (~20’). You can watch a movie on a phone at two feet or on a big TV at 20 feet." via Forbes

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

Is the world finally ready for Virtual and Augmented Reality? "The year is 1979 and Richard Bolt, a student at MIT, demonstrates a program that enables the control of a graphic interface by combining both speech and gesture recognition. ...To this day, Richard’s research speaks to the core of what natural gesture technology aims to achieve, that “natural user modality”. While advances in HMI have continued to iterate and improve over time, the medium for our visual interaction has remained relatively intact: the screen. Navigation of our modern UI has been forced to work within the limits of the 2D screen. With the emergence of AR and VR, our traditional forms of HMI do not provide the same accessible input as the mouse and touch interfaces of the past. Our HMI must evolve to allow users the ability to interact to the scene and not the screen." via Games Alfresco

What's the Secret to Tackling Three Touchscreen Design Challenges? "The secret to achieving the low energy, high performance capacitive sensing is a hardware-based capacitive-to-digital converter (CDC). The CDC consists of two current digital-to-analog converters or DACs. The first is a variable DAC that delivers the current to the external sensor capacitor, and the second is a constant current source for an internal reference capacitor. Capacitance is measured using successive approximation registers (SAR) which is an efficient process immune to DC offset and requires no external components. The CDC improves accuracy and noise immunity by performing a two-stage discharge of the external capacitor to remove ambient noise energy captured during the discharge process. The CDC offers a wide dynamic range by adjusting gain and reducing source current to change the charge timing and more directly reflect the voltage at the capacitive sensor when the source current and series impedance are both high (i.e., such as when using a touch panel or ESD protected capacitive pads)." via Silicon Labs

How healthy is the medical imaging display market? "The worldwide market demand for medical imaging displays used in clinical review, medical diagnostics and surgical procedures, is showing strong growth, according to the new NPD DisplaySearch Specialty Displays Report. Between 2013 and 2017, global revenues for the displays used in surgical procedures and clinical review are each expected to grow at a compound average rate of 9%. Growth in diagnostic displays is forecast to increase 5% per year. ...The number of radiology investigations continues to increase annually, spurring growth in the diagnostic display market. The 21.3in display, now comprising 67% of the market, will continue to dominate this category. However, due to specialised panel and backlight requirements, few manufacturers participate in this niche market. Those that do participate have limited capabilities and some run on older, less-efficient production lines. Therefore, the costs to produce these panels are higher than the more commoditised displays, which results in relatively stable ASPs." via Installation

Pilot's Eye View of the F-35 Head-Up Display "The Rockwell Collins ESA Vision Systems F-35 Gen III helmet mounted display provides unprecedented situational awareness for pilots. AINtv spoke with F-35 Lightning II Chief Test Pilot Alan Norman about what makes this head-up display special. (Video)" via AINtv

Display Industry Trends – Survey Results "The two questions on laser phosphor projectors seemed consistent with what was discussed at Display Summit a couple of weeks ago. But nearly 1/3 don’t see the technology becoming a mainstream product, a bit higher than I would have expected. This probably means that lamp-based projectors will become value products - and there will continue to be a market for them. On the question of lumen output in 5 years, some are very bullish (17%) seeing the technology enabling projectors with over 35K lumens of light output. Many were unsure about this question." via Display Central

What did you think about today's news? Leave a comment here and share your thoughts.

Sunday
Oct272013

Display Technology News Roundup 10.27.2013

Image via Alenia Aeronautica Press Office / The Aviationist

F-35 Program Stops Alternate Helmet Display Development "In a review of the F-35’s flight-test progress in 2011, the Department of Defense identified the HMDS as one of several program risks. It found that the helmet system was deficient in the areas of night-vision acuity, display jitter during aircraft buffeting and image latency from the F-35’s electro-optical distributed aperture system, which combined detracted from mission tasks and the use of the display as a primary flight reference. The Gen 3 helmet “will include an improved night vision camera, new liquid crystal displays, automated alignment and software improvements,” according to the JPO" via AIN Online

Samsung Display begins LCD production in China "Samsung Display, a unit of Samsung Electronics Co, and domestic competitor LG Display are both building multi-billion dollar flat-screen plants in China, to help them compete more effectively against little-known Chinese rivals. Chinese companies such as BOE Technology Group and TCL Corp's LCD unit CSOT are undercutting the world's two biggest LCD makers and winning market share with robust sales to local TV manufacturers." via Reuters

Apple's War on Pixels "Commodification is an inherently boring process, particularly when it comes to technology: over time, products that were once unique and expensive become less so. That process has pushed HDTVs, wireless routers, and Bluetooth speakers into living rooms en masse as the technologies behind them have become more and more generic. One technology most visibly marked by commodification is displays—in particular, high-resolution displays so packed with pixels that human eyeballs cannot perceive the individual dots that make up the image" via The New Yorker

The new manufacturing tech that will bring high-resolution displays to every device "Applied Materials’ three new manufacturing machines should help cut costs by improving quality control and flexibility at multiple points in the production process. The new AKT 55KS PECVD is a Plasma Enhanced Physical Vapor Deposition system that’s designed to better control the amount of hydrogen gas inside the manufacturing chamber, allow for a more uniform distribution of deposited material, and eliminate defects. The other two machines — the AKT PiVot 25K DT and PiVot 55K DT are essentially the same system, but built at two different sizes." via ExtremeTech

Augmented reality system makes cars see-through "Michel Ferreira and his colleagues at the University of Porto in Portugal developed the See-Through System, which uses a lightweight heads-up display to look "through" a truck up ahead. The system works by looking through a camera that records the trailing driver's perspective. Software recognises the back of the lead vehicle, and replaces it with a video feed from a webcam mounted on that lead vehicle." via New Scientist

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Mitsubishi Shuts Down Consumer Video Division "Mitsubishi was always a big player in the RPTV category...,and near the end of its run it created some truly gargantuan rear-projection displays. But the market moved on, wanting flat panels instead of floor standers, and unfortunately Mitsubishi couldn’t refocus fast enough to keep its head above water. So if you liked Mitsubishi’s gear, I’d watch big resellers and liquidators for some serious discounts between now and the holiday buying season." via Technology Tell

Technology to Humanize the Brand "In today’s virtual mannequins, high-resolution optics project a video onto a screen, usually made of cut glass or acrylic shaped in the silhouette of the mannequin speaker and coated with a semi-transparent film. Viewed from the side, the mannequin is only about one cm thick; viewed from the front, the cut-out resembles a person. Improvements on current technology are bringing these mannequins to life. Light efficient projection technology is increasing brightness from today’s average 3000 to 4500 lumens to well beyond 6000 lumens so that the image is crisp and distinctive, even in a brightly lit room." via Wired

Disney tech lets users feel 3D objects on flat screens "Ordinarily, when we feel a bump as we're sliding our finger across a smooth surface, we do so because the increase in friction created by the bump causes the skin in our fingertip to stretch ever so slightly. In order to simulate that friction, the Disney team uses a conductive display in which the electrostatic forces between the finger and the glass can be modulated by applying more or less voltage to the screen." via Gizmag

Semiconductor Will Help Develop Hi-Def Flat Panels "Researchers at the National Institute for Materials Science have developed a pixel switching semiconductor, which will be the key to driving next-generation displays by using an oxide film with a new elemental composition. ...The research results are expected to be effective not only for reducing the power consumption of displays which consume about half of the power in rapidly diffusing smartphones, but also for achieving higher frequencies to realize higher-definition TVs." via Controlled Environments

Does test equipment really need knobs and displays? "Put your tablet wherever you wish. Or remote the display to your laptop that is supporting some humungous monitor. Why settle for the fixed sizes of displays offered by vendors when you can buy high resolution displays at your local electronic retailer larger than your entire lab bench if you wished?Will engineers accept the remote display concept?" via EDN

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

A True Revolution in Display and Touch-screen Manufacturing Begins "Cambrios (Sunnyvale, California) announced the formation of TPK Film Solutions, Ltd. (TPKF), a joint venture with TPK, the world’s largest touch solution provider, and NISSHA, a leader in film-based touch sensors. TPKF’s mission is to “produce ClearOhm silver nanowire-based film in a roll-to-roll process allowing original equipment manufacturers (OEMs) to bring to market cutting-edge touchscreens for new products and applications worldwide,” Cambrios announced in its press release. ...All of this may not sound too exciting until you understand not only that transparent conductors are essential components of most displays and touch screens, but also that ITO has significant limitations." via HDTV Magazine

Nvidia Ends Screen Tearing With G-Sync Display Technology "Conventional LCD monitors have fixed refresh rates, typically 60hz, which the GPU must work with, but with G-Sync, a module goes inside the monitor that transfers control of the refresh rate to the GPU. Because the display adapter controls the timing, the two are always synchronized, eliminating screen tearing without sacrificing performance." via The Escapist

Honeywell Nearing Launch Of Touchscreen-Enabled Avionics "Along with qualitative assessments of the pilots’ workload, researchers used electromyogram measurements of muscle activity to gauge the pros and cons of mounting locations and touch technologies. The researchers confirmed that the best fit for touchscreen displays on large flight decks for high-end business jets or air transport aircraft is on the center console, or pedestal. “From a pilot workload perspective, if you put touch there, that’s the best place for it. In a smaller flight deck, pilots are used to looking at bezel buttons and knobs on the forward displays, so touch makes more sense there.”" via Aviation Week

Robotic testing finds touchscreen inaccuracies at edge of iPhone display "Using a robotic finger and a specialized suite of test software, Finnish automated testing company OptoFidelity found that Apple's latest handsets accurately detect touch inputs only across a small swath of their displays, roughly equating to the location of the on-screen keyboard. The iPhone 5s and 5c, according to the company, suffer from "extremely bad" touch performance near the edges of the display." via Apple Insider

New multi-touch sensor is customizable with scissors "Together with researchers from the MIT Media Lab, they developed a printable multi-touch sensor whose shape and size everybody can alter. A new circuit layout makes it robust against cuts, damage, and removed areas. The researchers have presented their work at the conference “User Interface and Technology” (UIST) in St. Andrews, Scotland. The sensor remains functional even when cut to a different shape." via R&D Mag

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

Tourist site desperate to stop graffiti adds vandal-friendly touchscreens "Officials in Wuhan's Yellow Crane Tower Park are determined to stop name-etching vandals once and for all, and have rolled out a series of graffiti-welcoming touchscreen displays. Now well-behaved and asshole tourists alike can enjoy the thrill of leaving their marks on priceless antiquities." via Shanghaiist

Existing Inside the Screens "In his TED Talk, Reach into the computer and grab a pixel, Dr. Lee shows some current projects and discusses future possibilities. The talk begins with discussing the boundaries between the user and the screen, and throughout the talk the boundary gets smaller until it no longer exists." via Engineering.com

Wheel-Shaped Molecules Better For Displays "Whereas the usual rod-shaped LEDs can trap up to 80 percent of light generated because light flows from them in only one direction -- known as polarization -- Lupton and his team made a molecule that is "perfectly symmetrical, and that makes the light it generates perfectly random,” he said in a university news release, noting the new organic molecule is known as OLED." via International Business Times

Worlds Largest e-Paper Sign Displayed at UN Headquarters "e-Ink has set a worlds record for the latest e-Paper sign that is installed at the UN Headquarters in New York. The eWall is an intricate combination of architectural, display and network engineering. It stands about 6 meters wide with 231 tiled 7.4″ displays arranged in a grid of 33 displays across by 7 displays high. With an overall resolution of 26,400 x 3,360 pixels, it is perfect to read at long and short distances." via Good Reader

Aerial Imaging Plate turns holograms into touchscreens "Much like a low-quality monitor with a very narrow viewing angle, the AIP’s holographic effect can only be viewed from a very specific location in relation to the projected image. To onlookers, it appears as a regular flat surface, but to a person standing in the sweet spot, the image looks as though it’s floating in the air. In what may seem like a classic case of “it’s a feature not a bug,” Asukanet feels the specific viewing angle requirement is appealing, perhaps as a privacy feature, even though onlookers can see what’s happening on the flat display." via ExtremeTech

What did you think about today's news? Leave a comment here and share your thoughts.

Saturday
May112013

Display Technology News Roundup 5.11.2013

Image via io9

Here's the Real Reason Why Virtual Reality Doesn't Work Yet "So, vision and self-motion will spark a little bit of place cell activity, but balance and other sensory cues are what's fully required to properly encode a rat’s — and likely a human's — position. Moreover, the researchers speculate that other cues — like smell, sound, and textures — are what's needed to help the rats properly self-locate themselves. But looking at the scans, the researchers realized that the only spatial encoding that was being done in VR was distance. It’s clear from the study, therefore, that a variety of sensory clues must interact and compete in the brain for us to construct a robust cognitive map." via i09

A liquid crystal force to reckon with "A need for fast, solution-based processing of organic electronic devices has sparked increased interest in ‘discotic’ or disc-shaped liquid crystals. These molecules, which contain a flat aromatic core surrounded by hydrocarbon side chains, can spontaneously pile into column-like structures that could be ideal for one-way charge transport. Research led by Takashi Kajitani and Takanori Fukushima from the RIKEN Advanced Science Institute has now revealed a way to turn individual discotic columns into liquid crystal films with unprecedented hierarchical order in two dimensions ("Amphiphilic Design of a Discotic Liquid-Crystalline Molecule for Dipole Manipulation: Hierarchical Columnar Assemblies with a 2D Superlattice Structure").via Nanowerk

'Next' iPhone display production set to begin "A Japan-based report indicates that production of at least one key component for the next iPhone will begin next month. Sharp will begin volume production in June of the display "panel" for the "next" iPhone model at its Kameyama plant in Mie prefecture, according to a report in Nikkan Kogyo Shimbun, a major Japanese industrial newspaper." via CNET

LG OLED Display: 'Unbreakable' Screen in Works for Apple and Google Phones "LG is shifting away from an unprofitable LCD business into OLEDs (organix light-emitting diodes), according to the Korea Times. "LG Display will produce an 'unbreakable OLED display' -- the first phase of flexible displays -- at our AP2 line of the 4.5th-generation plant in Paju, Gyeonggi Province. The move was aimed at taking a lead over rivals in the race for next-generation displays," Frank Lee, a spokesperson for LG said." via Latinos Post

Amazon's rumoured smartphone with 3D display is an awful idea "The first problem for Operation Hologram is there's no way it won't look completely cheesy. If they couldn't make Tupac look good at Coachella, there's no way in hell they'll make him look good on your phone. Doubt our word? Take a look at the glasses-free 3D screen on the Nintendo 3DS. It's the worst reading environment ever after reading in total darkness. If you're into headaches, fuzzy images, and being let down by technology, you're going to love a smartphone that pushes 3D to your already display-weary eyes." via Wired

Bluescape, the Touchscreen That Covers a Wall "According to The Wall Street Journal, Amazon is working on a retina-tracking phone that produces 3D images. Those images would float above the display, allowing you to relive your Star Wars fantasy of saving Princess Leia. ...The global design director for office-furniture maker Haworth, in partnership with interactive display company Obscura Digital, has created a touchscreen that covers a conference-room wall. Like a supersize version of CNN’s (TWX) Magic Wall, Bluescape displays a unified image across 15 linked 55-inch flat-screen monitors, each equipped with 32 specialized sensors to read users’ hand movements. ..The big hurdle for Haworth will be getting the wall screen’s costs down. A decade of efforts by other companies to market an “iWall” have failed because of high prices, says Roger Kay, president of market researcher Endpoint Technologies Associates, who has not seen Haworth’s product. He cited Hewlett-Packard’s (HPQ) video collaboration and networking system Halo, sold to Polycom (PLCM) in 2011, as a similar tool hamstrung by cost. But “I love the technology,” Kay says of wall-screen designs, adding that they’re the only devices since the iPhone “that made me feel like there was a quantum leap forward.”" via Bloomberg Businessweek

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Korea launches touch screen industry forum to help domestic manufacturers grow worldwide "The Korean government has established a forum for touch screen manufacturers in the country, aimed at encouraging cooperation and boosting their global businesses. The move is part of the country’s wider goal to become the world’s second larger touch screen supplier by 2020. The organization was launched by the Ministry of Trade, Industry and Energy today, as the Yonhap News Agency reports. Initial members include large firms like Samsung Display — a business owned by Samsung — and LG Display, in addition to some 120 small and medium touch screen manufacturers." via The Next Web

Inside the factory where Vertu assembles smartphones by hand "Vertu is one of the pioneers of using sapphire to cover its displays, a material which can only be cut with diamond tipped tools. While the screens are prepared offsite, Vertu bonds the sapphire glass to the display at its factory following 48 hours of polishing, a process unique in the industry. They’re bonded in a class 7 clean room, where the staff are clothed in hooded protective gear and the air is extracted through a system built into the windows. If you’re wondering just how clean the room is, class 7 is one step down from being suitable for surgery." via Digital Trends

Revolutionary display technology can lift the ban on digital billboards "Miortech introduces color displays that reflect sunlight, just like paper, with environmental benefits such as low power consumption and reduced light pollution overcoming the disadvantages of LED billboards. Miortech established Etulipa as a subsidiary to bring its electrowetting display technology (EWD) into the digital signage space. CEO Hans Feil states: "We can now demonstrate full color reflective displays with the same approach as in digital printing: the so-called CMY-technology. The positive feedback on our demos, which performed under different light conditions including bright sunlight, pointed us into the direction of the digital billboard applications. We found that advertisers and billboard owners are extremely keen to enable more digital boards. This technology allows for instantaneous creative updates and the ability to respond in real-time to current events and market conditions". The next step is to build a demo-digital billboard to prove our claims to advertisers and billboard owners." via EMSNow

Diamond Pixels: Galaxy S4’s unique subpixel arrangement gets a close up "This is still a PenTile arrangement – there are twice as many green subpixels as blue and red ones. However, at this resolution and pixel density, the drawbacks of PenTile arrangements are very hard to notice. For a primer on the difference between PenTile and the “regular” RGB displays, check out our Galaxy S3 vs Galaxy Note 2 comparison. According to Soneira, Samsung dubbed this novel subpixel arrangement Diamond Pixel, which is a bit misleading, considering that the subpixels (the “dots” of color that make up one pixel) are the ones that are actually diamond-shaped. Samsung probably wanted to distance this new layout from PenTile, which has often been the target of critics due to the “fuzziness” it shows around text and other fine graphics." via Android Authority

MIT tech turns any surface into a user interface "The interface-everywhere zeitgeist highlights the increasingly schizophrenic relationship between display and viewer: do we want greater usability and convenience, or do we want greater resolution and picture fidelity? As relatively low-fi displays like e-ink gain traction in everyday life, the role of the monitor will look increasingly like that of the television. Why consume Facebook the same way as Game of Thrones — does a wall post require such detail? And if a low-res display clamped against your temple can put a friend’s latest tweet next to their face as you speak to them, we might begin to wonder why we ever believed that a huge desktop screen was a good way to handle our increasingly endless digital chores in the first place." via ExtremeTech

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Garmin's Glass Cockpit "Information is displayed on the center touchscreen, as well as between the speedometer and tach. If one display goes down, the other will still function, reflecting Garmin's aviation-oriented redundancy mentality. A future head-up display is being designed into K2, as well. Interestingly, the touchscreen doesn't incorporate haptic feedback. Garmin argues it's not particularly effective and said the screens suffer unacceptable response lags. There will also be some analog technology set below the display. "In K2, we didn't put everything into the touch panel," product manager Kip Dondlinger says. "I'm still a strong believer in volume and temperature knobs and some preset buttons."" via Autoweek

Why Corning Isn't Scared of Sapphire As Disruptive Threat To Gorilla Glass "It turns out that Corning isn't scared of sapphire. The glass specialist has conducted a number of in-house tests to see how sapphire stacks up with its latest Gorilla Glass 3, with its own product coming out on top. The study involves placing two devices -- one covered in sapphire and another sporting Gorilla Glass -- into a spinning container full of everyday objects. After a 45-minute twirl, both materials are subjected to a ring-on-ring strength test that applies pressure. Corning says that Gorilla Glass withstands more than 2.5 times as much force." via The Motley Fool

Finger-free phones, full body gesturing, and our “touchscreen” future "Understatement of the century: touchscreen technology evolved at a rapid pace in the past decade. In the days of Y2K, Palm Pilots were a big deal. Five years ago? The iPhone debuted and the corresponding touchscreen explosion hasn't slowed up since. Today we're at a point where we think we understand how all the innovations in touch technology can fit into our future. But based on these last few years, good luck. Did anyone see the tablet-craze coming? The locomotive of technological innovation has yet to be derailed, but it’s come to a point where we must find particular uses and integrations for all of these advancements. Looking at how companies like Microsoft and Samsung are approaching the future of touchscreen technology may be the surest clues we can get. " via Ars Technica

Flexible smartphone curls up when it gets a call "The MorePhone is a very acrobatic smartphone. It's made with a flexible display and shape memory alloy wires. When a call comes in, it activates the wires and causes the whole phone to curl up. It's an unmistakeable visual cue that you've got someone on the line. The curling smartphone was developed by researchers at Queen's University Human Media Lab in Canada. The thin electrophoretic display that makes the movement possible was manufactured by Plastic Logic, a company specializing in plastic electronics. The alloy wires can trigger the phone to curl up at all corners, or to curl back individual corners to indicate different events, like an incoming text message or e-mail." via CNET

Frog Predicts: Flexible Displays Will Soon Change The World "As screens are reshaped, so will our experience of information. Rolston likens our tiny screens to “discrete pods of data,” whereas curved displays will break many of the natural barriers imposed by bezels. Imagine a recipe that doesn’t just appear on your wall or countertop, but can actually follow you around your kitchen, snaking its way into the nooks around faucets and refrigerator handles and presenting the pertinent information right where you need it (how many cups of water was that again? What should I be grabbing from the fridge?)." via Fast Co.DESIGN

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

Why Samsung and Intel bet big on a startup that searches every word you say "But why are three very different kinds of companies — an electronics manufacturer, chip maker, and telecom giant — all so interested in this little startup? For Samsung, the maker of the Siri clone S Voice and a company with a reputation for stuffing as many disparate software features into its gadgets as it possibly can, the answer is obvious. "Samsung imagines a world not too long from now where there is a flat-screen in every room. You might have a phone or tablet they built on you, but Samsung will also have a screen in your wall or on your refrigerator," says Tuttle. "They are interested in technology that can use voice commands as an input, that can listen to a conversation and provide answers without needing to be asked."" via The Verge

The Wacky World of OLEDs "If we ever get large OLEDs right — that is, if we learn how to print the front plane; use IGZO or graphene or carbon nanotubes for the backplane; develop flexible and reliable moisture and oxygen barriers; and fabricate reliable displays via roll-to-roll processing with high manufacturing yield — there will no longer be much reason to bother with either LCDs or plasma display panels. That goal continues to inspire investment, but it continues to be very, very elusive." via Display Central

The future of 'green' screens in digital signage "With LED backlighting, for example, the backlight stays true longer and degrades in performance more slowly than a CCFL backlight, Karnani said. "So it's not that it's just an environmental initiative, there's also an improvement to the actual display from the customer's standpoint, so I would say that ends up being really a win-win," she said. "Reduced total cost of ownership absolutely goes right to the ROI for the investment; it is not only environmentally friendly, it's a better product and you're going to save money."" via Digital Signage Today

3D Computer Vision Short Course at Display Week "The course explores key elements of vision including visual perception and the human visual system (seeing vs. perceiving). Bhowmik then delves into Image formation and capture including both 2D and 3D techniques that look at four cases including single and stereo view plus 3D imaging with structured light and time of flight. He next turns to the algorithms dealing with inference and recognition (the math) and leading-edge techniques that include the importance of edge detection and why. Bhowmik shows the calculus that helps identify the edge by displaying the image as an “image intensity function” and characterizing (finding) the edge as the place of rapid change along the horizontal scan line (first derivative) citing the work of John Carry at the MIT A.I. Lab, calling it “…the most widely used edge detector in computer vision today.”" via Display Central

What did you think about today's news? Leave a comment here and share your thoughts.

Thursday
Jan032013

The Display Technology News Roundup For 1.3.2013

Image via The Environmental Blog

OLED TV Arrives "The companies are tackling the OLED in different ways. Samsung is using three OLEDs—one red, one green, one blue—for each pixel; LG is using white OLEDs throughout, creating subpixels with colored and white filters. O’Donovan says he thinks, at least in the short term, that LG’s white OLED approach “will be better for yields and will create a more uniform color for the whole panel.”" via ieee spectrum

Panasonic Halts Plasma R&D "Panasonic is reportedly due to halt R&D activities for its plasma TVs to concentrate on developing OLED technology. ...In fact, plasmas could be phased out for good in 2014 to make way for upcoming OLED technology, which boasts all the benefits of plasma and LCD (infinite contrast, wide viewing angles, good response times, etc.) without the drawbacks." via Digital Versus

Small, medium-size AMOLED displays doubling by 2015 "Mass adoption of AMOLED technology, though, faces hurdles due to the higher cost and technical difficulty of manufacturing -- successful entry takes five years on average, according to the firm. "Prior to the start of mass production of AMOLED displays for mobile phones, only passive-matrix OLED (PMOLED) displays were available, mostly used in applications such as mobile phone sub-displays, automobile displays, and some industrial and niche applications," Chung stated." via Solid State Technology

The Difference Between Makers and Manufacturers "In Producing Prosperity: Why America Needs a Manufacturing Renaissance, Gary P. Pisano and Willy C. Shih, professors at Harvard Business School, list critical technologies in which the United States has lost or is at risk of losing its manufacturing prowess. Among them are rechargeable batteries, liquid crystal displays, and semiconductors (70 percent of the world’s foundry capacity is in Taiwan). It is no longer feasible to make e-ink readers in this country, though the technology was invented here. Shih rejects the notion that innovative products can reliably emerge when designs are shipped off for others to produce." via MIT Technology Review

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Apple May Use IGZO Display Technology on 2013 iPhone and iPad Releases "A rumor suggests that Apple, Inc. and Sharp Corp. are negotiating plans for the former company to use the latter’s IGZO (Indium Gallium Zinc Oxide) technology in its next-generation iPhones and iPad tablet computers. While this agreement could be a potential game-changer for Apple, low yield rates on Sharp’s end has forced Apple to consider other display manufacturers in Asia to ensure healthy supplies of display panels." via Eastern Morning Herald

A Closer Look – MIT Lab’s 8D display "The 8D display is just of several inventions to overcome the prohibitive bandwidth requirements of holographic displays, all without the need for eyeglasses, using optimized optical hardware and co-designed "compressive" image-encoding algorithms. To date, MIT have explored the use of such "compressive displays" that are primarily composed of multiple layers of high-speed liquid crystal displays (LCDs)." via 3D Focus

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Electrowetting combines the best of LCD and E Ink "The problem is that the polarization limits both the viewing angle and the light coming from the backlight. Together, those optical layers—the polarizers, the color filters, and so on—waste more than 90 percent of the backlight’s output. Electrowetting limits this loss by dispensing with the polarizers." via ieee spectrum

Liquid Crystal Finding Could Lead to New Computer Screens "University of Massachusetts Amherst mathematician Robert Kusner teamed up with researchers at the University of Colorado to conduct three-dimensional liquid crystal experiments. According to a press release, “The work is expected to lead to creation of new materials that can be actively controlled.” ...“These findings lay the groundwork for new applications in experimental studies of low-dimensional topology, with important potential ramifications for many branches of science and technology,” Smalyukh stated, noting that the finding could lead to upgraded liquid crystal display (LCD) screens in televisions and laptops that let them interact with light in new ways." via The Epoch Times

Uni-Pixel: Possibly The Best Investment For 2013 "In order to fully understand Unipixel's opportunity, one must first understand the market - touch screens. ...Current 'conductive layers' are made from ITO (Indium Tin Oxide) which is horribly flawed. Firstly, Indium is expensive, increasing from $300/kg to $800/kg in the past 3 years. ...Due to the brittleness of ITO, this cost gets exponentially more expensive for larger screens (such as tablets or laptops, or larger smart phones). This is where Unipixel steps in with the UniBoss product." via Seeking Alpha

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

LG Flexible e-Paper Fails to Change the e-Reader World "Why didn’t this screen technology ever catch on in the e-reader world? Amazon, Barnes and Noble, Kobo, Bookeen, and Bebook all use e-Paper made by e-Ink Holdings. This company has had a stranglehold on the entire e-reader segment. With the industry gravitating towards illuminated screens and e-Ink Triton 2, there aren’t any takers for LG." via Good Ereader

New E-Notepad by Sharp brings paper notebooks closer to their doom "The strongest point of the WG-N10 is the accuracy of its response when used with a stylus. It has a self correction system that adjusts the output lines accordingly as the stylus "writes", and can accurately display written notes even in the centimeter range. The reflective display even adds more intuitiveness to the unit, since it can be used just about anywhere that you can use an ordinary notebook, only you don't use up paper and ink!" via VR-Zone

Patent Issued for on Demand Calibration of Imaging Displays ""The steps further include receiving luminance and color values from a plurality of photosensors associated with the display screen, where the photosensors detect distinct luminance and color levels at the different regions of the display screen. The steps also include determining, from the detected luminance and color levels, a plurality of luminance and color correction factors by comparing the detected luminance and color values to reference luminance and color data. The steps additionally include applying the determined luminance and color correction factors to the different regions of the display screen so as to adjust luminance and color of the display screen at the different regions, where each of the different regions is spanned by a corresponding measurement field."" via Equities.com

Firewall: A Depth Sensitive Interactive Wall "Firewall is an interactive installation, a seemingly normal wall that is actually a stretched spandex surface which acts as a membrane interface sensitive to depth. People can push, touch, move and create fire-like visuals dynamically depending on the speed, pressure, depth and movement of the interaction with the spandex surface." via Digital Buzz Blog

What did you think about today's news? Leave a comment and share your thoughts.

Thursday
Nov292012

The Display Industry News Roundup For 11.29.2012

Image via Hagley Museum and Library / ieee spectrum

How RCA Lost the LCD "Today, liquid crystals are one of the most widespread technologies of the information age and the foundation of a multibillion-­dollar industry. Nevertheless, RCA’s abrupt exit from the field has largely obscured the pioneering contributions of its chemists, physicists, and electrical engineers. The events and decisions that drove the company to abandon its efforts are worth revisiting for what they reveal about the unpredictable nature of innovation—and about the tendency of large corporations to fail to capitalize on it." via ieee spectrum

Sony unveils a new monochrome 20.5" OLED monitor for the medical industry "Sony unveiled a new 20.5" monochrome OLED monitor for the medical industry. This monitor offers 2048x2560 resolution, high luminance, wide viewing angle, high contrast and deep, rich black reproduction (the black level is less than 0.001cd/M2 and 500 cd/M2 luminance)." via OLED-Info

Growing pains for new touch-sensor technology in latest iPhone, iPad "DisplaySearch said that there were production issues with the DITO film and lamination. In addition, aligning the sensors on film is more difficult than with glass, the report says. The iPad mini is the first tablet to use the DITO film touch sensor." via ZDNet

Display database for engineers Search thousands of display panels by multiple characteristics and compare them side-by-side using the display database multisearch.

Head-mounted displays for reality augmentation: a survey "One question worth keeping in mind when evaluating the new crop of head-mounted devices is whether they will end up broadening the augmentational capacity of the human eye or narrowing it." via Rough Type

Knuckles and nails get invite to the touchscreen party "A modified Samsung Galaxy S3 smartphone, fitted with a small vibration sensor and running Harrison's FingerSense software, listens for the acoustic and vibrational differences between the three different types of touch. A fingertip could select an object while a knuckle tap could work like the right-click on a computer mouse and open up a submenu, for example." via NewScientist

A New Chip to Bring 3-D Gesture Control to Smartphones "The controller works by transmitting an electrical signal and then calculating the three-coordinate position of a hand based on the disturbances to the field the hand creates. Whereas many camera systems have “blind spots” for close-up hand gestures and can fail in low light, the Microchip controller works well under these conditions and doesn’t require an external sensor (its sensing electrodes can sit behind a device’s housing). " via MIT Technology Review

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Sharp wins customers for new display technology "It is important for Sharp - and its deepening partnership with Apple - to keep innovating in LCD, since so many mobile display advances are centering on the alternative AMOLED technology, which is dominated by Samsung. Sharp's future success depends heavily on reducing the market power of Samsung and LG in screens, while fending off the rise of low cost Chinese suppliers." via Rethink Wireless

Chinese panel makers lobbying for higher import tariffs "Panel import tariffs are currently 5 percent, but tariffs on panels 32 inches or larger may increase to between 8-12 percent." via Morning Whistle

Flexible AMOLED display development still possible in Taiwan "ITRI said that between its upstream and downstream resources, Taiwan could have a sufficient supply chain for developing flexible AMOLED displays and could compete with Korea-based panel makers. However, that largely depends on whether upstream suppliers can boost production facilities and material amounts to create the technology, added ITRI." via DigiTimes

Taiwan touch panel suppliers pursue single-glass solutions "iDTI’s in-cell panels incorporating photo sensors in the TFT array substrate between the color filter and the polarizer can be applied to LCDs up to 100in and with 1920x1000-pixel resolution. The company is among the few that can manufacture such products using the hydrogenated amorphous silicon process. The last is compatible with current display production techniques, enabling fabrication on a mass scale." via Global Sources

Are you an engineer or have display expertise? Email jason@displayalliance.com to become a featured contributor in the Display Alliance knowledge base.

Next-Generation Anti-Reflective Coatings "The next generation of antireflection (AR) coatings has arrived and could help bump solar cell efficiency considerably by employing a promising new class of optical nanomaterials that allow for near-arbitrary control of the refractive index, conceivably the most important materials constant in optics and optoelectronics." via Solar Novus

What did you think about today's news? Leave a comment and share your thoughts.

Wednesday
Oct242012

The Display Industry News Roundup For 10.24.2012

Image via Military & Aerospace Electronics

Head up or head down: Debate avionics displays with Avionics Intelligence and Avionics Europe "The staff of Avionics Europe 2013 announces a new and exciting addition to the conference program. The 2013 event, to be held Feb. 20 and 21, 2013 in Munich, will feature an interactive panel discussion on a hotly debated topic: head up vs. head down displays." via Military & Aerospace Electronics

Anorexic display devices "Thinness is a distinct advantage when it means reduction of layers and consolidation, especially in the display. The new in-cell touch screens in the iPhone take out a layer. Every layer in a display adds two surfaces and each surface can usually be counted on to contribute 4% in surface reflections that reduce sunlight viewability and image contrast in general. Much of the visual improvement from the iPhone 4 to the iPhone 5 can be attributed to this feature." via Display Alliance

Hot off the Kindle Paperwhite, E Ink looks to the future "No matter how good the technology gets, e-paper will never replace LCDs in high-end, media-rich tablets, but E Ink doesn't worry too much about that: through mergers and acquisitions, the company has come to own Hydis, a Korean firm with a rich patent portfolio in LCD technology that's notably been licensed by Apple display suppliers AU Optronics and Sharp." via The Verge

Panasonic Exiting TV? "Although Plasma had been written off as a declining technology some years ago, the re-emergence of 3D sparked something of a revival. Due to the fact that 3D trades temporal resolution (response time) in order to get 3D, with its much faster response time, Plasma was a better fit for modification to 3D. Panasonic jumped on this and launched a line of studio production equipment to enable wider adoption of 3D. " via Flat Panel Display Blog

iPhone 5 Display: Now 16:9 with full sRGB Coverage "Touch sensing has to be time multiplexed with display driving otherwise the touch signal might be entirely lost in noise. At the same time, touch sensing is often around double the frequency (120–175 Hz) of display drawing (60 Hz), so this has to be done carefully during quiet periods, and thus that required communication and integration. The iPhone 5 uses a combination of TI and Broadcom controllers to do display controller and touch sensing, where previous generations of iPhone simply just used a single chip TI solution." via AnandTech

Do you need display panels? Email jason@displayalliance.com to source with Mass Integrated, Inc.

AUO to benefit the most from FFS technology agreement with Hydis Technologies "The observers also said AUO's overall product mix will be improved and that AUO will even have an advantage over E Ink when it comes to securing orders in the long run. Securing orders for small- to medium-size panel products will be particularly important for panel makers as the products are growing in demand and thus creating more competiiton in the market, added the observers." via DigiTimes

Sharp bets recovery on IGZO LCD panel biz "Sharp already makes IGZO displays for Apple's iPad tablet at its Kameyama plant since April, the report added. Sharp said IGZO displays, which consumes only 10 percent to 20 percent of the power required by conventional panels and are also thinner, are better suited for ultrabooks, Reuters noted." via ZDNet

The top 5 questions to ask when choosing a video controller "5. Are there any additional thermal or other environmental requirements? Though made of similar components serving similar purposes, video controllers are not created equally. They can be made to withstand high temperatures and humidity, severe vibrations and shock, and even strong magnetic fields such as those found in MRI (Magnetic Resonance Imaging) rooms." via Display Alliance

4K is now called Ultra HD "4K TVs are coming but you will call them Ultra HD TVs – says the Consumer Electronics Association (CEA). ...CEA also requires TVs to have at least 3,840 horizontal pixels and 2,160 vertical pixels to use the Ultra HD label. No words on what 8K will be called by the CEA but 8K is still many years away so we are not too concerned about this." via Flat Panels HD

Want to submit news to Display Alliance or be interviewed about your expertise in the display industry? Email jason@displayalliance.com.

Sony to launch industry’s first medical-grade monitor utilising OLED technology "OLED is the next generation flat-panel screen technology with superior image quality which outperforms liquid-crystal display (LCD). As a pioneer in OLED technologies, Sony's PVM-2551MD OLED medical monitor features a Full HD OLED panel using Sony's unique "Super Top Emission" technology which enhances the colour purity of emitted light and reduces ambient light reflection. " via nzDoctor

What did you think about today's news? Leave a comment and share your thoughts.

Friday
Oct122012

The Display Industry News Roundup For 10.12.2012

Image via Sean Follmer / MIT Media Lab

What Comes After the Touch Screen? "One was a malleable interface that can be shaped somewhat the way clay can, developed by a team at MIT's Media Lab. Sean Follmer, a PhD student in the lab of Professor Hiroshi Ishii, demonstrated several versions, including a translucent bendable touch screen laid flat on a table." via MIT Technology Review

Nanotubes Presage Holographic Displays "Holographic displays came one step closer as researchers at Cambridge University’s Centre of Molecular Materials for Photonics and Electronics (CMMPE) used carbon nanotubes to produce the smallest ever scattering elements (pixels) to create a static holographic projection of the word CAMBRIDGE." via Display Central

Hands-on with the first IGZO panel smartphone, Sharp's SH-02E "In short, the world’s first phone with an IGZO-based display is a bit of a letdown. But on the plus side, the high-density IGZO displays that Sharp has been teasing us with are now that much closer to market — something that we can all look forward to." via The Verge

Disney Uses 3D Printed Optics for Displays "At the recent ACM conference on User Interface Software and Technology (UIST ’12), Disney Research (Pittsburgh, Pennsylvania ) and Carnegie Mellon University presented a paper on the production of optics for user interfaces and displays using 3D printing technology." via Display Central

Do you need display panels? Email jason@displayalliance.com to source with Mass Integrated, Inc.

Japan Electronics Emulates Detroit Autos Before Bankruptcy: Tech "Prices for 40-inch LCD panels fell from about $2,700 in the beginning of 2004 to $1,300 in 2005 and kept dropping until they reached $250 at the start of this year. Samsung steadily gained market share, moving to 29 percent in 2012 from 10 percent in 2004. ...“Japanese companies innovated primarily on hardware and the device and they were fantastic at that,” Kenevan said. “The problem is, the key engine of innovation in the world has shifted from hardware to software, to systems, to solutions.”" via Bloomberg Businessweek

Interactive system detects touch and gestures on any surface ""Imagine having giant iPads everywhere, on any wall in your house or office, every kitchen counter, without using expensive technology," said Niklas Elmqvist, an assistant professor of electrical and computer engineering at Purdue University. "You can use any surface, even a dumb physical surface like wood. You don't need to install expensive LED displays and touch-sensitive screens."" via R&D Mag

Panel Makers Re-Adjust 4Kx2K Panel Plans "As LCD TV panel makers reshuffle their 4K panel plans, it is becoming clear that 4K is a necessity at certain sizes." via DisplaySearch Blog

Flat Panel Display Price Erosion and Performance Improvements Drive Increased Demand, Expediting Industry Recovery "However, with the exception of LCOS (liquid crystal on silicon, a form of microdisplay) all other display technologies, including plasma and passive matrix forms of LCD and OLED, are declining in 2012. In a sharp reversal, AMEPD (active matrix electrophoretic display), which is used in monochrome e-readers, swung from strong growth in 2011 to even stronger decline in 2012, due to competition from TFT LCD-based tablet PCs." via DisplaySearch

Touchscreens: How they work "Capacitive screens sense the tiny amount of electrical charge on your skin that is produced when your finger interacts with the screen's electrical field." via The Washington Post

AU Optronics reaches patent cross-licensing agreement with E-Ink, Hydis "The ten-year deal largely centers around LCD technologies, including Fringe Field Switching (FFS). AUO and E-Ink claimed in a statement that the agreement will “sharpen their competitive edge” in the industry." via TNW

Less business for Korean-based tablet panel makers? "Analysts predict that global tablet users will reach 124 million by 2014, and Apple currently holds nearly 70 percent of the tablet market share. Taiwan is a hotspot for PC OEMs, but the PC market is shrinking, hence, Apple’s move may give Taiwan the much needed boost in its tech sector." via VR-Zone

Want to submit news to Display Alliance or be interviewed? Email jason@displayalliance.com.

Google 10-inch tablet would push display tech envelope "In fact, Samsung is the only company that successfully manufactures both high-volume advanced AMOLED and LCD screens. But the high-density PPI action is currently centered on LCDs -- not AMOLED. Sharp, for example, announced the start of production of a 5-inch 443 PPI display last week. But if Sharp is able to make those kinds of LCDs, you can bet Samsung probably can too -- and will." via CNET

Capacitive Touch Case Makes Your iPhone Very Sensitive "[Canopy] introduced the Sensus iPhone case with a capacitive touch back at the 2012 GDC (Game Developers Conference) on Wednesday. ...Touch-capacitive sensors are located on the back and right edges of the case. From the looks of the video on Canopy’s pre-order page, the company is clearly courting gamers and game developers. The case moves fingers off the front of the iPhone and out of the way of the action." via Wired

High-directionality backlight for head-up displays "A head-up display (HUD) shows signals, data, or messages in front of the windshield of a vehicle and allows the driver to keep their line of sight while looking at the display unit. HUD has been successfully adopted commercially1,2 and has the most potential for use as the human visual interface for vehicles.3 In addition to concerns related to reliability, particularly with HUDs with a large display size, there are two major issues with current HUD design. One is high power consumption. The other is the volume of the display unit." via SPIE

Tuesday
Oct092012

The Display Industry News Roundup For 10.9.2012

Image via Slash Gear

Futaba showcases flexible OLED watch "The Display has a size of 3.5 inch and a 256×64 Pixel resolution with a pixel pitch of 0.34×0.34 mm. The brightness is about 100 lumen/m²" via OLED-Display See video here in the Tube section of Display Alliance.

Evaluating molecules within a sealed organic light emitting diode device "The developed method uses an advanced laser spectroscopic technique that has been improved to measure the molecular vibrational spectrum at the interface of a specific organic layer inside an OLED device. By employing a signal enhancement phenomenon that occurs at the interface with a concentrated electric field, the method can be used to evaluate the molecular condition of the organic layer during light emission without destroying the device." via Phys.org

Key milestone reached in OLED development: cynora presents new flexible prototype "“Using solution processing to produce components instead of conventional vapor deposition is a prerequisite for bringing production costs down to a level where flexible OLEDs are viable for mass-market applications,” explains Dr. Tobias Grab, the other cynora CEO. In addition, the cynora emitters used are based on readily available copper precursors which in itself further support the material’s suitability for mass production." via Cynora

Do you need display panels? Email jason@displayalliance.com to source from Mass Integrated, Inc.

ISE 2013 To Host MegaPixel Summit "“By hosting the MegaPixel Summit at ISE 2013, we hope to create a forum in which the challenges arising from creating large-scale, multiple-component displays are addressed by a mix of different stakeholders: manufacturers, distributors, integrators, rental companies and end customers.”" via Display Central

Smart pill bottle measures meds using touchscreen technology "AdhereTech's battery-powered smart pill bottle measures the amount of liquid or solid medication in a bottle using capacitance, the same technology used in touch screens. The sensors are between plastic in the bottle's walls so they never touch the meds, but can accurately measure down to one pill of solid medication or one millileter of liquid medication." via The Verge

Chip-on-Glass LCD Driver Technology "NXP has developed a Chip-on-Glass LCD driver approach whereby the integrated circuit mounts directly on the display glass, with the overall impact being a reduction in system cost. COG is a very reliable and well-established technology, which is often used in the automobile industry." via EE Times

Want to submit news to Display Alliance or be interviewed? Email jason@displayalliance.com

CGS not IGZO Adorn New Sharp 5-inch HD Panel "Truth be told, although an older technology CGS is still a good choice. The older CG-Silicon uses crystalline silicon with electron mobility up to 600 times faster than ordinary amorphous silicon and up to six times faster than low-temperature polysilicon (LTPS-the current technology in the iPhone retina class iPhone4) according to Sharp." via Display Central

Projected-capacitive touch panels: Coming to a hospital near you "The optical clarity of projected capacitive touch panels made with all-glass construction makes them ideal for incorporating touch interactivity into demanding medical applications that require high-end LCDs with superior contrast, resolution, luminance and sharpness. Touch panels made from PET film instead of glass typically have lower transmissivity, greater haze and often exhibit interference patterns, or Newton’s rings, all of which make them less suitable for medical devices." via ECN Mag

Friday
Sep282012

The Information Display News Roundup For 9.28.2012

Image via Tech Radar

Best projector: 8 top HD models reviewed and rated "For monitor panels, each pixel has three primary-coloured sub-pixel. Not so for LCD projectors, instead they have three individual panels, one for each primary colour. White light from the lamp is split using dichroic mirrors, sent through the three panels and then recombined with a prism." via Tech Radar

Lexus LF-CC Concept shows the future of touchscreen interiors "This is fully touch-sensitive and replaces the clumsy, button-heavy center consoles found in many luxury cars. Think of it as a more organic evolution of the 17-inch touchscreen wedged in the center of the Tesla Model S." via engadget

LG's chairman calls for a major change, will focus on OLED displays "LG is set to release its first OLED TV, the 55" (the 55EM9600) in early 2013. The company is also planning to start mass producing plastic-based flexible OLED panels by the end of 2013." via OLED-Info

Are IPS panels replacing TN panels in monitors? "TN panels have always been cheap to produce and therefore inferior display technology has been foisted upon us by panel manufacturers. Why the change? There are a number of reasons but first and foremost you can thank the smartphone and tablet makers." via Flat Panels HD

Do you need display panels? Ask Jason. I'm the managing editor of Display Alliance but I also source panels for Mass Integrated, Inc. Just let me know what you need: jason@displayalliance.com

Hand-waving can decode invisible images on screen "The system, developed by Hirotsugu Yamamoto and colleagues from University of Tokushima in Japan, uses a newly developed LED panel that can display 480 images per second. In this video, a pair of images of the New Scientist logo (one black, one white) is embedded into the background. When displayed alternately at a high speed, they are invisible to the naked eye. "A hidden image is presented 10 times faster than the frame rate used at the cinema," says Yamamoto." via New Scientist

Continuing to deliver improved performance challenges traditional display manufacturing techniques " The type of transistors and the processes used for their manufacturing determine the performance of the display, the costs, and, to a large extent, the environmental footprint of the device. Today, two transistor types are common in mass production; amorphous silicon (a-Si) transistors are dominant (>95%), while low temperature polysilicon transistors (LTPS) have a niche position." via Solid State Technology

Digging for rare earths: The mines where iPhones are born "Inside the rocks from this mine are rare-earth minerals, crucial ingredients for iPhones, as well as wind turbines, hybrid cars, and night-vision goggles. Minerals such as neodymium are used in magnets that make speakers vibrate to create sound. Europium is a phosphor that creates a bright red on an iPhone screen. Cerium gets put into a solvent that workers use to polish devices as they move along the assembly line." via CNET

AUO to adopt printing process for producing AMOLED panels "Taiwan-based TFT-LCD panel maker AU Optronics (AUO) hopes to increase its AMOLED material usage to 70-80% by using printing processing, which is expected to be the mainstream for producing large-size AMOLED panels in the future, according to industry sources." via DigiTimes

The iPhone 5 Display: Thoroughly Analyzed "While many were hoping for a move to OLED or some other screen innovation, this really is a huge step up that is very easy to quantify. To put this in perspective, in the past few years I've reviewed probably 30-40 different displays, from PC monitors to TVs to projectors. Not a single one, out of the box, can put up the Gretag Macbeth dE numbers that the iPhone can, and perhaps one projector (which listed for $20,000) can approach the grayscale and color accuracy out of the box." via AnandTech

Want to be interviewed for Display Alliance or submit news? Get in touch with me: jason@displayalliance.com

Why the iPhone 5 doesn't have an AMOLED screen "As well as the iPhone 5 being too big a product launch for AMOLED to grace, there's also the small matter of the supply being dominated by Samsung Display, which makes over 90% of AMOLED screens. "Now Apple and Samsung are engaged in intense legal battles," says Werner, "it is unlikely that Apple would want its arch-rival to also be its single source for OLED displays."" via Tech Radar

Cephalopods may be the key to better e-paper screens "When the creature needs to be a little lighter in color, muscle fibers pull the cell membrane outward, reducing the density of the pigment. These fibers relax when a darker color is needed. E-paper screens like the one used on the Kindle use a similar technique with light and dark pigment capsules embedded in each pixel." via Geek.com

HDTV Expert - No OLED-TV Panel Production from LGD until 2013 " The best bet for LGD’s delay is still the oxide backplane. Oxide remains the most promising next-generation semiconductor material for thin-film transistors (TFTs), and Sharp has apparently gotten it to work for LCDs in volume production. But oxide researchers overwhelmingly say there are a few remaining stability issues, at least when oxide TFTs are used with OLEDs, that will take another year or so to resolve." via HDTV Magazine