FREE

Subscribe to the display technology news roundups. You can also post your own content in the open section.

Display Industry News Roundups
Delivered via email

Twitter

Entries in 4K (3)

Sunday
May032015

Display Industry Technology News Roundup 5.3.2015

Image via Apple Watch

How does Apple's Force Touch enhance the touchscreen experience? "On March 9, Apple announced the Apple Watch and new MacBook at its Spring Forward event. The company also acclaimed its Force Touch (with Taptic Engine) as a new concept in these products. Apple previously seemed more interested in pressure-sensing technology, as it applied for a stylus use patent. However, tap-sensing replaced pressure-sensing. Tap-sensing is limited in pressure detection, and its sensing level is not as sophisticated as pressure-sensing technology. ...Force Touch is more of a marketing term than a specific technology. Apple will likely adopt the most appropriate tap-sensing technology depending on the product. For example, the company already indicated that touch screens are not suitable for clam-shell notebook form factors. Still, Apple will continue to improve its user interface. In addition to the new butterfly mechanism replacing the scissor-like keyboard, Force Touch replaces the diving board design to make its trackpad better." via ECN Magazine

Sharp may spin off LCD unit "Loss-making Japanese electronics maker Sharp Corp (6753.T) may spin off its LCD panel business and seek funding for it from the government-backed Innovation Network Corporation of Japan (INCJ), a source familiar with the plan said on Sunday. The Nikkei business daily earlier reported that the LCD unit, which supplies displays to smartphone and tablet manufacturers, will be spun off in the current fiscal year and that INCJ could invest 100 billion yen in the new entity." via Reuters

How refrigerator LCD screens are driving consumers to drink "The latest digital screen innovation for hospitality businesses is a refreshing change: pub refrigerators with transparent LCD displays built in. Heineken has ordered 200 of Focal Media’s new Damoc Cooler Displays for UK and Ireland locations serving its products, hoping to raise its beer brand’s profile and develop sales. Irish firm Focal Media creates content, digitising conventional advertising where necessary to tie in with events featured at the venues – particularly Heineken-sponsored sporting fixtures such as Champions League and European Cup rugby, which can be big attractions for pubs that show them on TV. Content also includes promotional videos and social media updates." via Screenmedia Magazine

Researchers developing LCD shutters that go from transparent to a new scene "A group of researchers at Pusan National University in South Korea are developing LCD shutters that can be either transparent — allowing you to see your neighborhood — or opaque — giving you views of anything you choose to put on the screen. While not a completely new idea, Tae-Hoon Yoon and his group have a new design that could eliminate some of the problems associated with making a transparent display out of OLEDs. "The transparent part is continuously open to the background," Yoon told AIP Publishing, which published his work in AIP Advances. "As a result, they exhibit poor visibility." Instead, the group’s idea involves a polymer network of liquid crystal cells that don’t absorb light when the shutter is "off," making the material transparent. To make the shutter opaque and ready to project an image, you supply electricity, letting special dichroic dyes absorb the light reflected by the LCDs." via Digital Trends

Shape-changing display could spell the end for the 2D graph "Researchers have developed a 3D prototype display which brings data to life in just this way sounding the death knell for the two dimensional bar chart. Human Computer Interaction specialists at Lancaster University have built a device which translates data into a three dimensional display. The interactive grid of 100 moving columns enables people to understand and interpret data at a glance. People can also physically interact with data points by touching, selecting and swiping through them to hide, filter and compare sets of data easily. The 3D display is radically different to interacting with data on a flat screen. A month's sales figures for example spring to life and take on a 'shape' in front of you, numbers become 'things', trends become gradients which you can reach out and touch." via Phys.org

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Graphene produces a working 3D holographic display "The graphene-enabled display created by a team of researchers from Griffith University and Swinburne University of Technology is based on Dennis Gabor's holographic method, which was developed in the 1940s and won Gabor the Nobel Prize in Physics in 1971. The team has created a high-definition 3D holographic display with a wide viewing angle of up to 52 degrees, based on a digital holographic screen composed of small pixels that bend the light. ...To create the hologram, graphene oxide (a form of graphene mixed with oxygen) is treated with a process called photoreduction, using a rapidly pulsed laser to heat the graphene oxide. This creates the pixel that is capable of bending the light to produce a holographic image. This, the team says, could one day revolutionise displays -- with the most obvious implications in mobile technology and wearable technology. It could also be used for holographic anti-counterfeit tags, security labels, and personal identification." via CNET

Refurbished Avionic Display Panel Connectivity "As part of our continuing series on aircraft refurbs, we’ll focus on a specific avionics upgrade this month—the wireless interface of a portable device (tablet or cell phone) running a flight planning app with IFR-certified, panel-mounted avionics. If you’re doing an avionics upgrade as part of a refurb, we think wireless avionics integration makes sense, especially as the cost may be as low as $1,000 plus installation on top of what you may already be doing. We’ll look at the underlying concept and outline what’s available from the two main players, Aspen and Garmin. We’ll also tell you up front that while Aspen was the first to deliver, its capabilities are limited, and Garmin’s offering is less expensive and more able." via AVweb

Should outdoor digital signage be enclosed? "As enjoyable as a bright sunny day is, it can wreak havoc on an LCD display. There are two main concerns, the first of which is brightness. An average brightness rating for a commercial LCD screen is usually somewhere about 500 nits, which is fine for indoor environments; however, put that screen in sunlight and it will be very difficult to view. With the increased demands on display manufacturers for products to be placed outdoors, we are now seeing displays made for this purpose with brightness ratings of 2,000 nits and higher. The second major concern is that many LCD panels, when exposed to direct sunlight, can become unstable and the image can turn black. In most cases this is temporary, although at a minimum it will cause a disruption to the messaging on the screen. Thankfully, we are starting to see manufacturers produce products that are designed to be viewed in direct sunlight. As you can see, there are several factors that need to be addressed when end-users are looking to expand their digital messaging beyond the inside of their store. " via Digital Signage Today

How to Use Imaging Colorimeters for Automated Visual Inspection of Flat Panel Displays "The use of imaging colorimeter systems and analytical software to assess display brightness and color uniformity, contrast, and to identify defects in Flat Panel Displays (FPDs) is well established. A fundamental difference between imaging colorimetry and traditional machine vision is imaging colorimetry's accuracy in matching human visual perception for light and color uniformity. This white paper describes how imaging colorimetry can be used in a fully-automated testing system to identify and quantify defects in high-speed, high-volume production environments." via Quality Magazine

Which Apple Watch Display Is the Best? "DisplayMate has taken a close look at the OLED screen in the smartwatch, and it notes that sapphire carries its share of drawbacks over the toughened glass in the Watch Sport. While you're still getting colorful, sharp visuals, the higher-end Watch's sapphire reflects almost twice as much light and washes out the picture in very bright conditions. And no, Apple can't use an anti-glare coating to fix this -- that would scratch easily, which misses the whole point of sapphire." via Engadet

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Could butterfly wings could reduce display screen reflections? "Materials such as glass always reflect part of the incident light, making display screens hard to use in sunlight, but the glasswing butterfly hardly reflects any light in spite of its transparent wings. Researchers at the Karlsruhe Institute of Technology (KIT) in Germany have found that irregular nanostructures on the surface of the butterfly wing cause the low reflectivity and hope that a synthetic version of the structure could be used for lenses or mobile phone displays." via E&T Magazine

How will new electronic paper make inexpensive electronic displays? "Researchers from the University of Tokyo have revamped an old e-paper concept to make an inexpensive handwriting-enabled e-paper well suited to large displays like whiteboards. They describe the e-paper in the Journal of Applied Physics ("Electrically and magnetically dual-driven Janus particles for handwriting-enabled electronic paper"). Traditional ink and paper is convenient for both reading and writing. In e-paper development the writing feature has generally lagged behind. Handwriting-enabled displays mainly show up in the inexpensive, but feature-limited realm of children's toys, and in the high-end realm of touch-screen e-readers and smart pens. A team of Japanese researchers has now taken an e-paper technology originally developed in the 1970s and updated it to make a tough and inexpensive display that could be used like a whiteboard when a large writing space is required." via Nanowerk

Why does HDR for 4K Display need end-to-end thinking? "According to Mark Horton, strategic product manager, encoding portfolio at Ericsson Television, "There is a big push back happening against phase 1 (4K resolution). There is little consumer benefit of Phase 1 at sets below 55 inches and they (broadcasters and service providers) think the extra bandwidth doesn’t justify the consumer benefits". These comments were some that he made at this week’s DVB World in Copenhagen. It’s for this reason, according to Horton, that many broadcasters and media companies think HDR is the much more worthwhile investment and that it can create improved results for consumers simply by being applied to HD instead of 4K resolution. Horton also claimed that Ericsson is working independently of the various HDR-related proposals being reviewed by ITU, MPEG and other standards bodies. So far Ericsson doesn’t favor any specific proposal but the company’s unique position of being involved in the entire content chain from content acquisition to end-user screen technology is causing Ericsson to worry about HDR-related standards and decisions being reached in isolation from each other in ways that cause harm to the entire HDR content transmission line. HDR content, in other words, needs to be implemented across the board in a uniform way and according to Horton, "We need to understand what the ‘HDR look’ will be for types of content, whether sports or drama, and need end-to-end tests in a real-world situation."" via 4K News

Oppo's bezel-less display technology appears on video "A video from China reveals some of the technology employed by Oppo that gives its newer handsets a look of being bezel-less, when in actuality there is a razor thin border around the glass. A prototype stars in the video and in real-life this technology will be employed on the Oppo R7. The extremely thin handset has been the subject of quite a few leaks. Besides presenting a bezel-less look, the Oppo R7 also could be the thinnest smartphone in the world measuring less than 4.85mm thick." via phoneArena

Google Unveils a Stick That Turns Any Display Into a PC "This is the Asus Chromebit, and according to Sengupta, it will reach the market this summer, priced at less than a hundred dollars. Sengupta is the Google vice president who helps oversee the distribution of Chrome OS, the Google operating system that runs the Chromebit. The device is a bit like the Google Chromecast—the digital stick that plugs into your television and streams video from the internet—but it does more. Google pitches it as something that lets you walk up to any LCD display and instantly transform it into viable computer, whether it’s sitting on a desk in a classroom, mounted on the wall in an office conference room, or hanging above the checkout counter in a retail store or fast food joint. “Think about an internet cafe,” Sengupta says during a gathering at Google’s San Francisco offices. “Think about a school lab.”" via Wired

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

Light-emitting paper acts as a cheap, flexible display "Ludvig Edman and a team of researchers at the Umeå University in Sweden believe they have solved the problem by going back to basics. They asked the question: "how do you make a display as flexible as a sheet of paper?" And the obvious answer they came back with was: "by using a sheet of paper." What Edman has done is to develop a spray-on solution which allows a sheet of paper to be turned into a usable display. Six layers are sprayed on to the sheet. The first layer is an adhesive allowing the rest of the layers to stick to the paper. Next, four layers form the actual display, allowing electricity to flow across the paper sheet and be turned into light. The final layer seals the sheet and protects the newly formed display." via Geek

How can a touchscreen display become a biometric scanner? "A team of researchers from Yahoo Labs has developed a much affordable alternative to fingerprint sensors for phones. It's a biometric system called "Bodyprint," and it only needs devices' capacitive touchscreen displays to authenticate body parts. Since displays have lower input resolution compared to specialized sensors, the system requires you to use larger parts of your body. It can recognize your ear, fist, phalanges, set of five fingers and your palm -- simply press any of them on the screen for access. In addition to serving as your phone's gatekeeper, it has a number of other potential applications, as well. (Video)" via Engadget

How can video display re-create human vision models? "Image processing technology has achieved remarkable breakthroughs, with more vivid colors, richer detail and higher definition images. This adds up to better resolution and a broader range of available colors at lower cost per pixel. But despite these stunning advances in visual display, it has been impossible to accurately reproduce what the human eye would see when viewing the scene directly. ...The human eye adjusts how it sees colors based on brightness, and color of the viewing light. Technological displays, unlike the human eye, do not differentiate between regions that should be adjusted (such as shadows) and those that should not. ...This new era of real-time color processing, first developed by Entertainment Experience for its eeColor software application, in partnership with Rochester Institute of Technology, is now a reality. The new model displays vibrancy that even in Ultra HD, has never before been possible." via TechRadar

Could Silver Nanowire Conductors Improve Touchscreen Displays? "There are several factors that make silver nanowires a material ideally suited to new products for the "touch age." Let's start by noting that touchscreens should be thin, light, visible in various ambient light conditions, highly responsive, and -- perhaps most importantly -- lower-cost. The most popular touchscreen technology is projected capacitance, or pro-cap. At the core is a transparent conductor -- a layer of material that needs to conduct electricity while remaining transparent so as to allow light from the underlying display to shine through the screen. Indium tin oxide (ITO), the legacy conductor material, is neither very conductive nor transparent compared with silver nanowires. It's also too brittle for flexible display and touch applications. Forthcoming generations of both smaller and larger touch interfaces need to be very responsive; also, the display needs to be bright and visible in all types of ambient lighting. This requires notably more highly conductive transparent conductors with high transmission ability. Silver nanowire delivers on all counts." via EE Times

World's first multitouch, button-free 3D shaped panel for automotive "Canatu, a leading manufacturer of transparent conductive films, has in partnership with Schuster Group and Display Solution AG, showcased a pioneering 3D encapsulated touch sensor for the automotive industry. The partnership is delivering the first ever, button-free 3D shaped true multi-touch panel for automotives, being the first to bring much anticipated touch applications to dashboards and paneling. The demonstrator provides an example of multi-functional display with 5 finger touch realized in IML technology. The integration of touch applications to dashboards and other paneling in cars has long been desired by automotive designers but a suitable technology was not available. Finally the technology is now here. Canatu's CNB™ (Carbon NanoBud®) In-Mold Film, with its unique stretch properties provides a clear path to the eventual replacement of mechanical controls with 3D touch sensors. The touch application was made using an existing mass manufacturing tool and industry standard processes." via Printed Electronics World

What did you think about today's news? Leave a comment here and share your thoughts.

Sunday
Jan042015

Display Industry Technology News Roundup 1.4.2015

Image via Cicret Bracelet

Could You Transform Your Skin into a Touchscreen? "The bracelet works by projecting the interface onto the user’s arm using a tiny ‘pico projector’. When the wearer places their finger on the display projected on their skin, it interrupts the sensors encased in the bracelet, and this information is then relayed to the processor which responds - thus allowing the user to scroll, answer calls and generally use the screen projected on their wrists as they would their actual phone. If their crowdsourcing is successful, the waterproof Cicret bracelet could allow a user to access their phones services underwater, answer calls and texts without actually using their handset and access films, games and music with ease whilst on the go. (Video)" via Newsweek

Understanding Brightness in AMOLED and LCD Displays "AMOLED is a fundamentally different approach to the problem, which uses organic emitters deposited upon a substrate. These emitters are designed to emit red, green, or blue when voltage is applied across two electrodes. Similarly, TFTs are needed to control each pixel. As one can see, AMOLED is a simpler solution, but in practice the issues with such an implementation can be quite complex. In order to determine what picture content to use for a measurement of maximum brightness, we must turn to a measurement known as Average Picture Level (APL). This is best explained as the percentage of the display that is lit up compared to a full white display, so a display that is completely red, green, or blue would be 33% APL. As one might already be able to guess, with AMOLED power consumption is highly dependent upon the content displayed." via AnandTech

Toshiba To Show Advanced 3D/2D LCD Technology "The technology is said to use low-crosstalk liquid crystal lens technology with a high-definition gradient-index (GRIN) lens for a 15-inch 4K LCD panel. The GRIN lens system is engineered to avoid image brightness degradation in 3D mode and does not deteriorate image quality in 2D mode. It reduces the abnormal alignment of liquid crystal molecules near the boundaries of liquid crystal lens, reducing crosstalk to 2 percent, against 5 percent in conventional 3D displays, according to Toshiba." via Twice

What the hell are quantum dots, and why do you want them in your next TV? "The funny thing about LED lights is that they don’t glow white naturally. The “white” LEDs in your TV are actually blue LEDs coated with a yellow phosphor, which produces a “sort of” white light. But this quasi-white light falls short of the ideal. If you fed it into a prism (remember those from science class?) it wouldn’t produce a rainbow of light equally bright in every shade. For instance, it is woefully short on intensity in the red wavelengths, so red would appear dimmer than green and blue after filtering, thus impacting every other color the TV tries to make. Engineers are able to compensate for this uneven color intensity by balancing it with workarounds (you could dial down green and blue to match, for instance), but the intensity of the final image suffers as a result. What TV manufacturers need is a “cleaner” source of white light that’s more evenly balanced across the red, green and blue color spectrum. That’s where the quantum dots come in." via Digital Trends

Photonic computers promise energy-efficient supercomputers "As Big Data gets even bigger, there are concerns that trying to process it with conventional computing methods is becoming unsustainable in terms of power consumption alone. ...UK start-up Optalysys is among the pioneers of this new direction in information processing. The company has built a system using low-power lasers and tiny liquid-crystal displays (LCDs), using weather forecasting as an application in its R&D work with the European Centre for Medium-Range Weather Forecasts (ECMWF). ...Early demonstrator systems contained traditional optical components but the latest design replaces most of these with the micro-LCDs. Two-dimensional matrices of numbers are programmed into the input micro-LCD's grid such that the intensity level of each pixel represents a number. When a laser is shone through or is reflected off this input data pattern, the pattern is effectively 'stamped onto the beam', turning the data matrix into a waveform. After processing, the results are converted back into digital form with a camera." via E&T Magazine

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Mass production of innovative OLED displays "The YIELDjet FLEX tool was developed to enable Thin Film Encapsulation (TFE), which is the process that gives thinness and flexibility to the OLED device. It is the first product to emerge from Kateeva's YIELDjet platform, a breakthrough precision deposition technology platform that uses innovative inkjet printing to cost- effectively deposit coatings on complex applications in volume-manufacturing environments. ...TFE is an exceptionally complex process. At the center is a multi-layer stack of thin-film materials that are highly sensitive to oxygen and water. Particles on any layer cause defects throughout the device, and even the slightest uniformity aberration will distort the display image. The current production approach is vacuum evaporation. It's a well-established technology that uses shadow masks to deposit the layers in a stencil-like process. However, it is slow, inefficient, difficult to scale, and prone to yield-killing particles." via Printed Electronics World

How does this 4K display turn digital art into an analog experience? "The 50-inch display has a native resolution of 3,840 x 2,160, which is the standard for 4K Ultra HD. However, it isn’t a television, so don’t expect to tune into your favorite show. Think of it like a tabletop digital photo frame, but the extremely high resolution makes digital paintings and photography resemble more like those in museums rather than a digital signage (perfect for cameras that can shoot 4K photos). The large physical size also gives the artwork more impact. Because it supports animated GIFs, you can display moving art too. But the Depict Frame doesn’t want viewers to know that it’s a digital screen. Its industrial designers intentionally made it to resemble a regular framed art – digital meets analog." via Digital Trends

Jaguar Makes Blind Spots Transparent Using External Cameras, Internal Display Screens "The so-called 360 Virtual Urban Windscreen embed a layer of OLED screen on the car’s “pillars” – the chunky visibility-blocking body panels supporting a vehicle’s roof – that are connected to external cameras and motion sensors. When the car is stopped at an intersection and detects pedestrians, the pillar screens are activated, making them appear transparent. They deactivate after the car starts moving again. When drivers turn their heads to check rear blind spots, cameras linked to side pillar screen are activated to offer greater visibility while making lane changes. The vehicle’s entire windshield also acts as a head’s up display highlighting stoplights and even places of interest (landmarks, parking garages). (Video)" via International Business Times

Display industry standoff between Beijing and Seoul threatens tech trade pact "South Korea, home to the world’s biggest manufacturers of liquid crystal display screens for televisions, is pressing for the inclusion of flat-panel displays in the current round of talks for a broader Information Technology Agreement (ITA), a plurilateral tariff-cutting pact launched in 1997 under the World Trade Organisation. "It seems this issue is the most serious obstacle to an agreement on expanding the product scope of the ITA,” a source familiar with the negotiations said. “China remains adamant that flat-panel displays cannot be added to the ITA list for zero tariffs because that would effectively increase the cost of the agreement to the country."" via South China Morning Post

This Giant Rainbow Was Made With Display Tech That's Used To Study Exoplanets "It's not very often that the fields of advanced photonics and installation art meet. But in Amsterdam this week, visitors to the city's Central Station are getting a look at what happens when liquid crystal optic technology is used to something completely unscientific: Make public art. ...The installation uses something called a spectral filter—a filter that takes white light and then disperses it into the full range of colors in the rainbow without losing any hues or light to leakage, based on a technology called geometric phase holograms. In this case, Escuti created a filter with a film of liquid crystal that dispersed light from a four kilowatt spotlight into a perfect rainbow on the glass facade of the train shed." via Gizmodo

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

How could display technology learn from spider webs? "Structures as commonplace as spider webs and leaf venation show they can lead to near optimal performance when copied to create flexible and durable networks that can be used in optoelectronic applications such as photovoltaic devices and display screens, the researcher team reported in a recent edition of the journal Nature Communications. ...A second network, drawing on the same designs that make spider webs effective traps for insects and bugs, serves as an efficient way to draw light through an optoelectronic device. The network could find potential application in next generation touch screens and display panels because of its extreme flexibility, significant mechanical strength, "stealth" transparency and high degree of uniformity, the researchers said." via PD&D

How Touchscreens May Lose Their Touch "The 3-D motion sensing of SpaceTouch is made possible by the addition of invisible electrodes to an everyday touchscreen. These electrodes generate an electric field in front of the touchscreen. When a hand moves through the electric field, information about the movement can be acquired by a specialized computer chip. The possible applications for this technology are many, said Verma. For instance, a surgeon in an operating room could use SpaceTouch to scroll through a patient's X-rays. A cook could browse recipes on a surface embedded in an oven or refrigerator door. And three-dimensional sensing could create new possibilities for video games and educational tools. " via Princeton University

ESPN’s Octoviz display immerses viewers in a graphical experience "ESPN’s new Digital Center-2 (DC-2), which opened last June on its Bristol campus, houses the 10,000 square-foot “SportsCenter” studio, a visually rich eye candy showcase where imagery splashes across wall, floor and banner displays. At the epicenter of this live moving image experience is Octoviz, a one-of-a-kind innovation—imagined by ESPN and co-developed with Vizrt—that controls the displays of real-time graphics across any combination of on-set monitors in their native resolutions and aspect ratios." via TVTechnology

Touchscreens Clean Up Gulfstream Symmetry Flight Deck "Five years ago in an office with limited access to just a handful of Gulfstream employees, project pilots Scott Evans and Scott Martin began outlining the design of an advanced flight deck for their company’s new G500 and G600. The resulting design–the Symmetry flight deck–not only expands the envelope of avionics interface and infrastructure design but also shows how manufacturers are taking advantage of new engineering options to make flying safer and more efficient. In this new Gulfstream flight deck it is clear that there is no effort to edge pilots out of the cockpit and replace them with technology. “We do not want to replace the pilot,” said Evans. “We have a philosophy of supporting the pilot.” What the new design does is simplify the pilot interfaces, including replacing many knobs and switches with touchscreen controls and eliminating the massive control yoke in favor of a new type of sidestick control that makes the cockpit look much less cluttered, improves the view of the instrument panel displays and helps keep pilots in the control loop." via AINonline

Multitouch Gestures for All Automotive Segments "With ‘infrared curtains’, Continental developers are opting for an economical alternative to touch-sensitive or so-called capacitive displays. "Back in 2011, we showed that an infrared curtain can turn any surface in the car interior into a user interface," says Fook Wai Lee, display developer at Continental in Singapore. "We have now developed this technology to the point where it also recognizes typical multi-touch gestures as input, like swiping, zooming, and pinching." ...Continental's infrared curtain is built from an array of infrared light sources on the sides of the display. While a single row of LEDs was sufficient for one-finger operation, multi-touch gestures require two rows of infrared lights connected together. If a multi-touch gesture is performed in front of the display, the electronics of the human machine interface (HMI) recognize the finger's positions from the blocked light." via Autocar Professional

Touchscreen TFT displays for gloved hands "Itron has applied its vacuum fluorescent display (VPD) process to the production of projective capacitive touch sensors which it claims has performance and set-up benefits compared with indium tin oxide (ITO)-based projective capacitive touch panels. This low impedance touch technology, which the firm calls MPC Touch, works with 4mm of plastic or 8mm of glass overlay and is able to support applications where users are wearing a range of gloves from nitrile, nylon, cotton and leather. "Rain drops do not false-trigger the touch screen when the front panel is inclined to allow water to run off," said Itron UK managing director, Andy Stubbings." via Electronics Weekly

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

How laser-illuminated cinema projectors promise brighter and more realistic images "By definition, stereoscopic 3D films show a different image to viewers’ left and right eyes, thus cutting a projector’s apparent brightness in half. Polarising filters, used in most 3D cinemas, halve that again. The glasses worn by the audience take a fifth of what’s left. Pity the unlucky patron who watches a 3D film at the end of a projector’s lamp life: he might see just a tenth of the intended brightness. Little wonder, then, that 3D films have earned a reputation for dimness and causing eyestrain. Nearly three quarters of people opted for the 3D version of a film in 2008. Less than 40% do today. One possible solution involves that cinematic staple: laser beams. Rather than being attached to a shark’s head, used to intimidate an immobilised secret agent or vaporise a rebel planet, these lasers are kept safely in the projection booth. Laser-illuminated projectors cannot only deliver brilliantly bright images, in either 2D or 3D, but also promise better contrast, more natural colours, ultra-realistic high frame rates and resolutions that might finally approach those of film." via The Economist

Sony's new wearable display transforms any glasses into smartglasses "The device is much closer in design to Glass than Sony’s previous head-mounted wearable, SmartEyeglasses, which are glasses that can project basic green text and graphics across the lenses. The new 40-gram display consists of a band that goes around the back of a user’s head, with electronics on either arm. The control board on the right side contains a processor, sensor hub and Bluetooth and Wi-Fi modules. The unit has an electronic compass, accelerometer and a touch sensor for manipulating and selecting display contents. The 0.23-inch color OLED microdisplay, which Sony says is one of the smallest in the world, has a resolution of 640-by-400 pixels, which is slightly better than Glass at 640-by-360. It extends from the board and an optical unit reflecting the display contents is positioned near the right eye so vision isn’t blocked." via PCWorld

Chemical-Sensing Displays and Other Surprising Uses of Glass "Displays, in one way or another, account for about half of Corning’s revenue, with roughly a third of that coming from Gorilla Glass. To expand this market and withstand challenges from other materials, Corning is trying to add capabilities to Gorilla Glass, such as the sensor application. And it’s looking for new markets for Gorilla Glass beyond displays. The ability to turn your phone into a biological and chemical sensor is one of the earliest-stage projects in the lab. Researchers at Corning and Polytechnique Montreal discovered that they could make very high quality waveguides, which confine and direct light, in Gorilla Glass. The researchers were able to make these waveguides very near to the surface, which is essential for sensors. Doing so in ordinary glass would break it. Making the waveguide involves focusing a beam of intense laser light near the surface of the glass, then tracing it along the glass, which locally changes its optical properties." via MIT Technology Review

Entry-level and high-end converging to propel the digital signage market into 2015 "Integrators are seeing increased price competition for large-scale kiosk rollouts in big-box retail, among other settings. Until now, the only low-cost option was to try to work with a consumer device that wasn't built for digital signage and didn't deliver the reliability and functionality of commercial-grade, purpose-built player. Now that professional-quality, reliable, low-cost, networked signage players are available, we are seeing more and more new customers jumping at the chance to replace printed signage with digital displays in applications where cost was previously a barrier. If 2014 was all about 4K, I believe that 2015 will be a year of healthy and sustainable growth in the digital signage industry — growth driven by the proliferation of 4K and the emergence of reliable low-cost digital signage solutions." via Digital Signage Today

3D virtual reality display technology for medical schools "ZSpace and EchoPixel aim to improve medical education with their virtual reality kit by enabling students and doctors to more accurately replicate work on organs than with other available technology, improving their knowledge and experience so they make fewer errors. ...Accurate replications are one of the main problems facing virtual 3-D technologies. If objects can't be manipulated in virtual space just as in real life, one can imagine it will be hard for anyone to buy into the technology, much less a doctor who needs the most accurate data to determine a patient diagnosis like colon cancer. There are several reasons why objects may not appear accurate in virtual spaces. Visual and position tracking speeds, poor 3-D display resolution and even a limited field of view can all lead to inaccuracies, according to research at several universities. Together, they can even lead users to experience motion sickness. The zSpace 3-D display aims to minimize these problems." via Silicon Valley Business Journal

Do Displays Matter? "In our era, hardware – including displays - quickly becomes commoditized. That is not to say that you can’t obtain a temporary competitive advantage with a dazzling display: the thin Samsung edge-lit “LED” TV, the Apple Retina and the Asus Zenbook NX500′s 4k, quantum-dot-enhanced display. And you can hurt yourself by falling behind the curve. When Apple saddled its iPhones with a ridiculously small 4″ display for a couple of years longer than it should have, Samsung picked up significant market share. (Apple still plays in a somewhat different universe from the rest of us, so it reaped record breaking sales with the iPhone 6 simply by catching up with the competition.) But the business model by which handset companies could maintain large margins by upgrading the hardware a couple of times a year is rapidly losing its effectiveness. " via Display Central

OLEDS and Why Your Old CRT TV Still Works "In a CRT, glass provided an absolute hermetic environment. The CRT was made in a clean environment, the inside of the tube, where the phosphors were, was maintained in high vacuum. Further a sacrificial barium "getter" was deposited on the inside of the tube to bind any stray oxygen that was left over from manufacture. So, the phosphors did their thing in an absolutely pristine environment that was maintained as long as the tube continued to hold its vacuum, which is tantamount to forever for a consumer product. ...The high voltage architecture may have some relevance to OLED design as well. But certainly, cleanliness and hermaticity are the key to making OLED technology work." via Norm Hairston's Flat Panel Display Blog

What did you think about today's news? Leave a comment here and share your thoughts.

Wednesday
Sep032014

Display Technology News Roundup 9.3.2014

Image via Fast Company

Could displays correct your vision? "New technology under development at the University of California-Berkeley and MIT automatically corrects people's vision defects without glasses. Plug a glasses prescription into the new software, and the system calculates how to display the image so it won't look blurry. Basically, by adjusting the light from each pixel on a device and then passing it through a tiny mesh attached to a monitor or phone screen, the system personalizes the image so it's crystal clear." via Fast Company

How will liquid crystal displays help reach exaFLOP speeds? "The Optalysys Optical Solver Supercomputer will initially offer 9 petaflops of compute power, increasing to 17.1 exaflops by 2020. 40 gigaFlops demonstration uses 500x500 pixels working 20 times per second. Each pixel does the work of about 8000 floating point operations in each of the cycles. Speeding up 427 million times to 17.1 exaFLOPS can be done with 500,000 X 500,000 pixels and 8550 cycles per second. They can use multiple LCD displays. ...There was no need to drive the refresh rate up for human displays but there will be a need for optical computing. 4K monitors usually have 8.3 million pixels (3180X2160). Thirty six thousand 4K monitors would get to 500K X 500 K." via Next Big Future

Is quantum dot the next step in LCD TV evolution? "Some brands have adopted quantum dots in their products, such as Amazon’s Kindle Fire HDX tablet PC and Sony’s Triluminos TV in 2013. However, quantum dots must surmount some hurdles to achieve wide usage. The first is the issue of Cadimium, which most quantum dots contain, and which is a regulated substance due to enviromental concerns. The second is the high price of quantum dot materials. Quantum dot makers are working on solving these issues. For example, Nanoco has produced Cadmium-free quantum dot materials, and other makers have secured a temporary exemption for Cadmium in products with quantum dot-based displays imported into Europe. Regarding price, many materials and films makers are entering the market, especially from Korea such as Samsung, LG, Sangbo, LMS, Hanwha and SKC-Haas. Increased competition will likely help to lower prices in the near future." via ECN Mag

Will superconducting quantum dots make LCD displays more vibrant? "Eric Nelson, who is also behind the development of the technology, says that it is called quantum dot enhancement film (QDEF), which enhances the colors of LCD screens. Nelson explains that current technology consumes a lot of energy to display bright colors on the LCD screen. However, QD efficiently provides high-color display and consumes far less energy when compared to other technologies. ..."They sandwiched the QDs between two polymer films, with the QDs embedded in an epoxy glue. Coatings on the film provide further protection and enhance the viewing experience," per ACS." via Tech Times

Who made the world's first touch-sensitive LCD basketball court? "Nike has created this huge touch-sensitive LCD basketball court for a training session with Kobe Bryant. The court has built-in motion sensors that track every player's movements individually. It can also display training exercises for them to follow and show statistics on performance. (Video)" via Gizmodo

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Could this new type of heads-up display redefine the augmented reality experience? "Andrew Maimone’s device is called a Pinlight Display and he has been working on this device in collaboration with three researchers from the University of North Carolina and two from Nvidia Research. The Pinlight Display does not rely on standard optical components. Instead, it utilizes an array of “pinlights”, which are essentially bright dots. Maimone explains that “A transparent display panel is placed between the pinlights and the eye to modulate the light and form the perceived image.” He added that "Since the light rays that hit each display pixel come from the same direction, they appear in focus without the use of lenses." (Video)" via Mobile Commerce Press

Will Quantum Dots Dominate Displays? "The QD Vision approach adds quantum dots to strips of blue LED edge lights around an LCD panel. Some of this light is converted to red and green, which is mixed by a light guide to create a high-quality white backlight for the LCD panel’s color subpixels. The Nanosys/3M approach places the QDEF film over the back of the panel, and then a blue LED backlight is applied (typically through edge lighting and a light guide). Some of the blue light is converted in the film layer to red and green light before reaching a subpixel. A new, third, approach is being developed by a number of researchers. This involves putting the quantum dots directly on the blue LED chip. This can simplify the optical and light-management requirements, but it subjects the quantum-dot material to higher operating temperatures that can decrease performance." via IEEE Spectrum

LEDs Made From ‘Wonder Material’ Perovskite "A hybrid form of perovskite – the same type of material which has recently been found to make highly efficient solar cells that could one day replace silicon – has been used to make low-cost, easily manufactured LEDs, potentially opening up a wide range of commercial applications in future, such as flexible color displays. This particular class of semiconducting perovskites have generated excitement in the solar cell field over the past several years, after Professor Henry Snaith’s group at Oxford University found them to be remarkably efficient at converting light to electricity. In just two short years, perovskite-based solar cells have reached efficiencies of nearly 20%, a level which took conventional silicon-based solar cells 20 years to reach." via redOrbit

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

TouchPico projector creates touchscreens anywhere. "The secret to the touch interaction is in the TouchPico stylus. The built-in infrared camera determines the touchscreen coordinates and relays that information to the projector at up to 40 frames per second. That’s fast enough to play some Fruit Ninja and score. This definitely takes interaction above and beyond the combination of laptop, projector and some gyroscopic mouse. The TouchPico can definitely up your professional game, too" via TechnologyTell

Can new automotive heads-up display be alternative to smartphone while driving? "Navdy wants to change the way we interact with our connected devices while driving altogether. It’s a device that can be mounted on any car’s dashboard and it provides a high-resolution heads-up display that helps you see the road behind it. Simpson says the technology is the same used by pilots when they land an airplane. By seeing what’s behind the display and still receiving information from it, the driver doesn’t take his or her eyes off the road, which should decrease the chances of an accident according to the NHTSA, which released guidelines last year to minimize in-driving distractions such as manual text entry on navigation systems." via TechCrunch

Spheree lets you watch animated images in full 3D "Spheree is the work of a team of researchers working together from the University of São Paulo, Brazil, and the University of British Columbia, Canada, and it's mesmerising to behold. Like its name suggests, it's in the shape of a translucent sphere; inside, the viewer can see animations and images that appear to float in the centre; as the viewer moves around, they can see other sides of the object as their perspective changes. And it's all based on optical illusion. Packed inside the Spheree are multiple mini-projectors, which shine the images onto the interior surface of the sphere. Special software designed by the team blends the projector images together for a single, seamless image." via CNET

5 Things CIOs Should Know About Digital Signage "4. Networks will be put to the test. An increasing percentage of digital signage content will be in ultra-high-definition (UHD), which could swamp an organization’s network bandwidth, particularly if the content is pulled from the cloud instead of being stored and played locally, says IHS analyst Sanju Khatri. Digital signage using UHD displays first appeared at McCarran International Airport in Las Vegas in 2013, and IHS predicts huge growth in UHD displays in the next few years." via CIO

Creating Next-Generation Holograms "Researchers from the University of Cambridge have developed a new method for making multi-colored holograms from a thin film of silver nanoparticles, which could greatly increase the storage capabilities of typical optical storage devices. ...Using a single thin layer of silver, Montelongo and his colleagues patterned colorful holograms containing 16 million nanoparticles per square millimeter. Each nanoparticle, approximately 1,000 times smaller than the width of a human hair, scatters light into different colors depending on its particular size and shape. The scattered light from each of the nanoparticles interacts and combines with all of the others to produce an image. The device can display different images when illuminated with a different color light, a property not seen before in a device of this type. Furthermore, when multiple light sources are shone simultaneously, a multi-color image is projected." via Controlled Environments

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

What does automotive HMI technology have in store for the near future? "There is much potential for in-car HMI, but we have yet to see a similar revolution in the UX and UI of the automotive industry. ...However, in the haste to get on-trend, car manufacturers have simply used screens to replicate what has been before, rather than taking an empathetic, intelligent approach. Skeuomorphism abounds, where physical buttons are replaced with look-alikes on a screen — familiarity is retained, but at the expense of tactile feedback. Current touchscreen HMIs are often simply ill-considered re-appropriated solutions developed for completely different contexts (which we will discuss later in the series)." via ITProPortal

Is 4K the next flat panel display revolution, or another gimmick? "While 3D may not have stuck around, now every film is projected in 4K. However, there are circumstances when the benefit of 4K can’t be fully utilized, and it has to do with viewing distance. To perceive the full benefit of a 4K resolution, the human eye needs to be at a certain distance from the screen, depending on the size of the screen. This is also true for 1080p over 720p. "In general, from an integrators perspective, we try to look at what the viewing distance or the vieiwing angle of the folks involved might be," says Mike Hancock, Vice President at MechDyne Corporation. "Flat panels, except for some of the really extreme large-sized ones, really only work good for rooms that are less than 20 feet."" via CorporateTechDecisions

Foldable, Bendable And Bright: The Future Of Displays "Micro transfer printing (µTP) is a method of, essentially, using a type of rubber stamp to pick up very thin strips of semiconductor material (as the “ink”) and place it somewhere else by “stamping” it. The advantage of this technique is that it allows you to put high performance semiconductor elements (such as gallium nitride (GaN)) onto substrates where they wouldn’t normally be compatible (like plastic). And you can place the stamp over and over thereby creating large areas of arbitrary shapes out of otherwise small, high performance components—in ways that are impossible or infeasible with traditional semiconductor manufacturing processes. Prof. John Rogers describes in the Science paper making displays out of micro-LEDs using transfer printing. The micro-LED displays had great battery life, were very bright and, due to the nature of µTP, could be made at low cost. The trifecta of low cost, good battery life and a scalable manufacturing platform while maintaining excellent performance comprises the display industry equivalent of winning eight gold medals in the same Olympic games. It’s a big deal, and Rogers may have delivered it." via Forbes

New automotive head-up display could help drivers avoid collisions in fog "The head-up display (HUD) is the work of Professor Vassilis Charissis and his team, based in the Virtual Reality and Simulation Laboratory (VRS Lab) within the School of Engineering and Built Environment. The display has been developed and evaluated in a 3D driving simulator, which allows drivers to navigate a perfectly recreated stretch of the M8, M74 and M80 in a choice of conditions. One of the options lets the driver tackle the motorways in dense fog, before giving them the chance to drive the same stretch again using the head-up display. When initiated, the windscreen of the car highlights where other vehicles are on the motorway within a 400-metre range and even lets the driver know when it’s safe to change lanes." via FleetNews

A Vision of Future Displays "According to Brown Elliott, Samsung has not used even half the IP they have developed and will need some time to roll out what is already possible for the next few years. But Samsung’s loss could be someone’s gain. As I said in the beginning, Brown Elliott has a vision of the display industry in 10-15 years. The way she sees it, light field displays and light field imaging devices will merge in this time period. That means a clear sheet of glass (or plastic) will be both camera and display. With a light field display, a lens is placed above a number of pixels that can provide “views” from many directions. Current light field displays and imagers are always pixel limited so the resulting images are typically 50-200x lower resolution than the underlying display resolution." via Display Central

What did you think about today's news? Leave a comment here and share your thoughts.