FREE

Subscribe to the display technology news roundups. You can also post your own content in the open section.

Display Industry News Roundups
Delivered via email

Twitter

Entries in Holograph (13)

Sunday
May032015

Display Industry Technology News Roundup 5.3.2015

Image via Apple Watch

How does Apple's Force Touch enhance the touchscreen experience? "On March 9, Apple announced the Apple Watch and new MacBook at its Spring Forward event. The company also acclaimed its Force Touch (with Taptic Engine) as a new concept in these products. Apple previously seemed more interested in pressure-sensing technology, as it applied for a stylus use patent. However, tap-sensing replaced pressure-sensing. Tap-sensing is limited in pressure detection, and its sensing level is not as sophisticated as pressure-sensing technology. ...Force Touch is more of a marketing term than a specific technology. Apple will likely adopt the most appropriate tap-sensing technology depending on the product. For example, the company already indicated that touch screens are not suitable for clam-shell notebook form factors. Still, Apple will continue to improve its user interface. In addition to the new butterfly mechanism replacing the scissor-like keyboard, Force Touch replaces the diving board design to make its trackpad better." via ECN Magazine

Sharp may spin off LCD unit "Loss-making Japanese electronics maker Sharp Corp (6753.T) may spin off its LCD panel business and seek funding for it from the government-backed Innovation Network Corporation of Japan (INCJ), a source familiar with the plan said on Sunday. The Nikkei business daily earlier reported that the LCD unit, which supplies displays to smartphone and tablet manufacturers, will be spun off in the current fiscal year and that INCJ could invest 100 billion yen in the new entity." via Reuters

How refrigerator LCD screens are driving consumers to drink "The latest digital screen innovation for hospitality businesses is a refreshing change: pub refrigerators with transparent LCD displays built in. Heineken has ordered 200 of Focal Media’s new Damoc Cooler Displays for UK and Ireland locations serving its products, hoping to raise its beer brand’s profile and develop sales. Irish firm Focal Media creates content, digitising conventional advertising where necessary to tie in with events featured at the venues – particularly Heineken-sponsored sporting fixtures such as Champions League and European Cup rugby, which can be big attractions for pubs that show them on TV. Content also includes promotional videos and social media updates." via Screenmedia Magazine

Researchers developing LCD shutters that go from transparent to a new scene "A group of researchers at Pusan National University in South Korea are developing LCD shutters that can be either transparent — allowing you to see your neighborhood — or opaque — giving you views of anything you choose to put on the screen. While not a completely new idea, Tae-Hoon Yoon and his group have a new design that could eliminate some of the problems associated with making a transparent display out of OLEDs. "The transparent part is continuously open to the background," Yoon told AIP Publishing, which published his work in AIP Advances. "As a result, they exhibit poor visibility." Instead, the group’s idea involves a polymer network of liquid crystal cells that don’t absorb light when the shutter is "off," making the material transparent. To make the shutter opaque and ready to project an image, you supply electricity, letting special dichroic dyes absorb the light reflected by the LCDs." via Digital Trends

Shape-changing display could spell the end for the 2D graph "Researchers have developed a 3D prototype display which brings data to life in just this way sounding the death knell for the two dimensional bar chart. Human Computer Interaction specialists at Lancaster University have built a device which translates data into a three dimensional display. The interactive grid of 100 moving columns enables people to understand and interpret data at a glance. People can also physically interact with data points by touching, selecting and swiping through them to hide, filter and compare sets of data easily. The 3D display is radically different to interacting with data on a flat screen. A month's sales figures for example spring to life and take on a 'shape' in front of you, numbers become 'things', trends become gradients which you can reach out and touch." via Phys.org

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Graphene produces a working 3D holographic display "The graphene-enabled display created by a team of researchers from Griffith University and Swinburne University of Technology is based on Dennis Gabor's holographic method, which was developed in the 1940s and won Gabor the Nobel Prize in Physics in 1971. The team has created a high-definition 3D holographic display with a wide viewing angle of up to 52 degrees, based on a digital holographic screen composed of small pixels that bend the light. ...To create the hologram, graphene oxide (a form of graphene mixed with oxygen) is treated with a process called photoreduction, using a rapidly pulsed laser to heat the graphene oxide. This creates the pixel that is capable of bending the light to produce a holographic image. This, the team says, could one day revolutionise displays -- with the most obvious implications in mobile technology and wearable technology. It could also be used for holographic anti-counterfeit tags, security labels, and personal identification." via CNET

Refurbished Avionic Display Panel Connectivity "As part of our continuing series on aircraft refurbs, we’ll focus on a specific avionics upgrade this month—the wireless interface of a portable device (tablet or cell phone) running a flight planning app with IFR-certified, panel-mounted avionics. If you’re doing an avionics upgrade as part of a refurb, we think wireless avionics integration makes sense, especially as the cost may be as low as $1,000 plus installation on top of what you may already be doing. We’ll look at the underlying concept and outline what’s available from the two main players, Aspen and Garmin. We’ll also tell you up front that while Aspen was the first to deliver, its capabilities are limited, and Garmin’s offering is less expensive and more able." via AVweb

Should outdoor digital signage be enclosed? "As enjoyable as a bright sunny day is, it can wreak havoc on an LCD display. There are two main concerns, the first of which is brightness. An average brightness rating for a commercial LCD screen is usually somewhere about 500 nits, which is fine for indoor environments; however, put that screen in sunlight and it will be very difficult to view. With the increased demands on display manufacturers for products to be placed outdoors, we are now seeing displays made for this purpose with brightness ratings of 2,000 nits and higher. The second major concern is that many LCD panels, when exposed to direct sunlight, can become unstable and the image can turn black. In most cases this is temporary, although at a minimum it will cause a disruption to the messaging on the screen. Thankfully, we are starting to see manufacturers produce products that are designed to be viewed in direct sunlight. As you can see, there are several factors that need to be addressed when end-users are looking to expand their digital messaging beyond the inside of their store. " via Digital Signage Today

How to Use Imaging Colorimeters for Automated Visual Inspection of Flat Panel Displays "The use of imaging colorimeter systems and analytical software to assess display brightness and color uniformity, contrast, and to identify defects in Flat Panel Displays (FPDs) is well established. A fundamental difference between imaging colorimetry and traditional machine vision is imaging colorimetry's accuracy in matching human visual perception for light and color uniformity. This white paper describes how imaging colorimetry can be used in a fully-automated testing system to identify and quantify defects in high-speed, high-volume production environments." via Quality Magazine

Which Apple Watch Display Is the Best? "DisplayMate has taken a close look at the OLED screen in the smartwatch, and it notes that sapphire carries its share of drawbacks over the toughened glass in the Watch Sport. While you're still getting colorful, sharp visuals, the higher-end Watch's sapphire reflects almost twice as much light and washes out the picture in very bright conditions. And no, Apple can't use an anti-glare coating to fix this -- that would scratch easily, which misses the whole point of sapphire." via Engadet

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Could butterfly wings could reduce display screen reflections? "Materials such as glass always reflect part of the incident light, making display screens hard to use in sunlight, but the glasswing butterfly hardly reflects any light in spite of its transparent wings. Researchers at the Karlsruhe Institute of Technology (KIT) in Germany have found that irregular nanostructures on the surface of the butterfly wing cause the low reflectivity and hope that a synthetic version of the structure could be used for lenses or mobile phone displays." via E&T Magazine

How will new electronic paper make inexpensive electronic displays? "Researchers from the University of Tokyo have revamped an old e-paper concept to make an inexpensive handwriting-enabled e-paper well suited to large displays like whiteboards. They describe the e-paper in the Journal of Applied Physics ("Electrically and magnetically dual-driven Janus particles for handwriting-enabled electronic paper"). Traditional ink and paper is convenient for both reading and writing. In e-paper development the writing feature has generally lagged behind. Handwriting-enabled displays mainly show up in the inexpensive, but feature-limited realm of children's toys, and in the high-end realm of touch-screen e-readers and smart pens. A team of Japanese researchers has now taken an e-paper technology originally developed in the 1970s and updated it to make a tough and inexpensive display that could be used like a whiteboard when a large writing space is required." via Nanowerk

Why does HDR for 4K Display need end-to-end thinking? "According to Mark Horton, strategic product manager, encoding portfolio at Ericsson Television, "There is a big push back happening against phase 1 (4K resolution). There is little consumer benefit of Phase 1 at sets below 55 inches and they (broadcasters and service providers) think the extra bandwidth doesn’t justify the consumer benefits". These comments were some that he made at this week’s DVB World in Copenhagen. It’s for this reason, according to Horton, that many broadcasters and media companies think HDR is the much more worthwhile investment and that it can create improved results for consumers simply by being applied to HD instead of 4K resolution. Horton also claimed that Ericsson is working independently of the various HDR-related proposals being reviewed by ITU, MPEG and other standards bodies. So far Ericsson doesn’t favor any specific proposal but the company’s unique position of being involved in the entire content chain from content acquisition to end-user screen technology is causing Ericsson to worry about HDR-related standards and decisions being reached in isolation from each other in ways that cause harm to the entire HDR content transmission line. HDR content, in other words, needs to be implemented across the board in a uniform way and according to Horton, "We need to understand what the ‘HDR look’ will be for types of content, whether sports or drama, and need end-to-end tests in a real-world situation."" via 4K News

Oppo's bezel-less display technology appears on video "A video from China reveals some of the technology employed by Oppo that gives its newer handsets a look of being bezel-less, when in actuality there is a razor thin border around the glass. A prototype stars in the video and in real-life this technology will be employed on the Oppo R7. The extremely thin handset has been the subject of quite a few leaks. Besides presenting a bezel-less look, the Oppo R7 also could be the thinnest smartphone in the world measuring less than 4.85mm thick." via phoneArena

Google Unveils a Stick That Turns Any Display Into a PC "This is the Asus Chromebit, and according to Sengupta, it will reach the market this summer, priced at less than a hundred dollars. Sengupta is the Google vice president who helps oversee the distribution of Chrome OS, the Google operating system that runs the Chromebit. The device is a bit like the Google Chromecast—the digital stick that plugs into your television and streams video from the internet—but it does more. Google pitches it as something that lets you walk up to any LCD display and instantly transform it into viable computer, whether it’s sitting on a desk in a classroom, mounted on the wall in an office conference room, or hanging above the checkout counter in a retail store or fast food joint. “Think about an internet cafe,” Sengupta says during a gathering at Google’s San Francisco offices. “Think about a school lab.”" via Wired

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

Light-emitting paper acts as a cheap, flexible display "Ludvig Edman and a team of researchers at the Umeå University in Sweden believe they have solved the problem by going back to basics. They asked the question: "how do you make a display as flexible as a sheet of paper?" And the obvious answer they came back with was: "by using a sheet of paper." What Edman has done is to develop a spray-on solution which allows a sheet of paper to be turned into a usable display. Six layers are sprayed on to the sheet. The first layer is an adhesive allowing the rest of the layers to stick to the paper. Next, four layers form the actual display, allowing electricity to flow across the paper sheet and be turned into light. The final layer seals the sheet and protects the newly formed display." via Geek

How can a touchscreen display become a biometric scanner? "A team of researchers from Yahoo Labs has developed a much affordable alternative to fingerprint sensors for phones. It's a biometric system called "Bodyprint," and it only needs devices' capacitive touchscreen displays to authenticate body parts. Since displays have lower input resolution compared to specialized sensors, the system requires you to use larger parts of your body. It can recognize your ear, fist, phalanges, set of five fingers and your palm -- simply press any of them on the screen for access. In addition to serving as your phone's gatekeeper, it has a number of other potential applications, as well. (Video)" via Engadget

How can video display re-create human vision models? "Image processing technology has achieved remarkable breakthroughs, with more vivid colors, richer detail and higher definition images. This adds up to better resolution and a broader range of available colors at lower cost per pixel. But despite these stunning advances in visual display, it has been impossible to accurately reproduce what the human eye would see when viewing the scene directly. ...The human eye adjusts how it sees colors based on brightness, and color of the viewing light. Technological displays, unlike the human eye, do not differentiate between regions that should be adjusted (such as shadows) and those that should not. ...This new era of real-time color processing, first developed by Entertainment Experience for its eeColor software application, in partnership with Rochester Institute of Technology, is now a reality. The new model displays vibrancy that even in Ultra HD, has never before been possible." via TechRadar

Could Silver Nanowire Conductors Improve Touchscreen Displays? "There are several factors that make silver nanowires a material ideally suited to new products for the "touch age." Let's start by noting that touchscreens should be thin, light, visible in various ambient light conditions, highly responsive, and -- perhaps most importantly -- lower-cost. The most popular touchscreen technology is projected capacitance, or pro-cap. At the core is a transparent conductor -- a layer of material that needs to conduct electricity while remaining transparent so as to allow light from the underlying display to shine through the screen. Indium tin oxide (ITO), the legacy conductor material, is neither very conductive nor transparent compared with silver nanowires. It's also too brittle for flexible display and touch applications. Forthcoming generations of both smaller and larger touch interfaces need to be very responsive; also, the display needs to be bright and visible in all types of ambient lighting. This requires notably more highly conductive transparent conductors with high transmission ability. Silver nanowire delivers on all counts." via EE Times

World's first multitouch, button-free 3D shaped panel for automotive "Canatu, a leading manufacturer of transparent conductive films, has in partnership with Schuster Group and Display Solution AG, showcased a pioneering 3D encapsulated touch sensor for the automotive industry. The partnership is delivering the first ever, button-free 3D shaped true multi-touch panel for automotives, being the first to bring much anticipated touch applications to dashboards and paneling. The demonstrator provides an example of multi-functional display with 5 finger touch realized in IML technology. The integration of touch applications to dashboards and other paneling in cars has long been desired by automotive designers but a suitable technology was not available. Finally the technology is now here. Canatu's CNB™ (Carbon NanoBud®) In-Mold Film, with its unique stretch properties provides a clear path to the eventual replacement of mechanical controls with 3D touch sensors. The touch application was made using an existing mass manufacturing tool and industry standard processes." via Printed Electronics World

What did you think about today's news? Leave a comment here and share your thoughts.

Tuesday
Mar172015

Display Industry Technology News Roundup 3.17.2015

Image via Saarland University

DIY printing custom touch-sensitive displays "Computer scientists from Germany's Saarland University have developed a technique that could allow anyone to literally print their own custom displays, including touchscreens. Using a regular inkjet printer equipped with a special ink, a DIY thin-film electroluminescence (TFEL) display can simply be printed out from a digital template of the desired size and shape using a program like Microsoft Word or Powerpoint. "So far, nothing like this has been possible," says researcher Simon Olberding. "Displays were produced for the masses, never for one individual user."" via Gizmag

Japan Display confirms new plant "Japan Display Inc said on Friday that it would build a new $1.4 billion liquid crystal display (LCD) manufacturing plant, which a source said would supply smartphone screens for Apple Inc. The company did not name Apple, in line with its policy of not identifying clients. A person familiar with the matter said Apple would also invest an unspecified amount in the plant, which would further the Japanese screen maker's aim of becoming the primary supplier of high-tech screens for iPhones. ...Japan Display said it aims to start operations at the plant in 2016 and expects the move to increase its LCD capacity by 20 percent. The company, formed in a government-backed deal in 2012 from the ailing display units of Sony Corp, Toshiba Corp and Hitachi Ltd, has led a volatile course since its public offering last year." via Reuters

Sharp Reiterates Commitment to Panel Business ""Our panel business hasn’t worsened to the point where we’re saying it is facing an uphill battle yet, and we are committed to developing more value-added products and to remain an important pillar for the company," Norikazu Hohshi, who heads Sharp’s device business, said at a news conference. The display maker recently slashed its business outlook, saying it would record a net loss of ¥30 billion ($246 million) in the fiscal year ending this month, compared with a previous forecast of a ¥30 billion net profit. The company has struggled as rival Japan Display Inc. has made aggressive sales pitches to Sharp’s main customers in China such as Xiaomi Corp." via The Wall Street Journal

Is VR Union more immersive than Oculus Rift? "VR Union, a two-year old startup based in Prague, has leapfrogged his advances in virtual reality by creating virtual-reality goggles with a display that is triple the resolution of anything else available on the market. ...VR Union also found a way to leverage Fresnel lens technology, originally developed by French physicist Augustin-Jean Fresnel for lighthouses in 1823. The tech allows for a nearly 180-degree field of vision and makes it possible for users to wear prescription glasses inside the headset. In contrast, Oculus uses a conventional heavier aspheric lens, similar to a handheld magnifying glass, that offers a 100-degree field of vision. VR Union says the conventional approach disturbs complete immersion by creating the effect of peering through two short tubes. Dozens of display companies, including Sony and Samsung, are vying to become the global standard for VR goggles before they become a mainstream device." via Fortune

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Are real-time holographic displays one step closer to reality? "Real-time dynamic holographic displays, long the realm of science fiction, could be one step closer to reality, after researchers from the Univ. of Cambridge developed a new type of pixel element that enables far greater control over displays at the level of individual pixels. The results are published in Physica Status Solidi. ...“In a typical liquid crystal on silicon display, the pixels’ electronics, or backplane, provides little optical functionality other than reflecting light,” said Calum Williams, a PhD student at Cambridge’s Dept. of Engineering and the paper’s lead author. “This means that a large amount of surface area is being underutilised, which could be used to store information.” Williams and his colleagues have achieved a much greater level of control over holograms through plasmonics: the study of how light interacts with metals on the nanoscale, which allows the researchers to go beyond the capability of conventional optical technologies." via R&D Mag

Sharp's sensitive 70-inch LCD responds to brushstrokes "The capacitive touch panel screens, shown off Tuesday in Tokyo, provide an experience that's closer than ever to working with pen and paper, even with large screens. Technology in the prototypes could be used in a range of applications from sketching to calligraphy to writing memos on mobile devices. ...Capacitive stylus brushes and touchscreens that respond to pencil have been commercialized already, but Sharp says its displays are more sensitive and work with large formats. When screens are larger, noise from the display reduces the sensitivity of the touch panel. Sharp was able to keep the noise in check by using a parallel drive sensing method, which drives the processes of multiple touch sensors at the same time." via CIO

How do LED displays work? These amazing GIFs show exactly how "Designer Jacob O'Neal of Animagraffs.com has created a series of beautiful animations that show just how all these pixels and crystals combine to display the words and pictures we see." via Business Insider

Prototype of Retina Imaging Laser Eyewear for Low-Vision Care "QD Laser, Inc. and the Institute for Nano Quantum Information Electronics at the University of Tokyo announced the prototype of the retina imaging laser eyewear for low vision care. ...The laser eyewear has a miniature laser projector on the glasses frame that provides the wearer with digital image information using the retina as a screen. Remarkable characteristics, not achieved by other devices using liquid crystal displays (LCDs), are as follows: 1. Wide viewing with a small device owing to the projection principle. 2. High brightness, high color reproducibility and energy reduction owing to semiconductor lasers as RGB light sources. 3. Image viewing at any position of the retina. 4. Focus free - meaning picture clarity is independent of the individual’s visual power. 5. All optics to be installed inside the glasses owing to the “focus free” characteristics. The glasses appear to be normal." via Novus Light

Korean researchers develop microencapsulation technology for displays "A team of experts at the Korea Advanced Institute of Science and Technology have developed technology that they say will help viewers see images three-dimensionally. "We use molecular engineering to create rubber covered microcapsules that can move around in liquid and change shape and color, making displayed images look three dimensional." They say their technology, which microcapsules phototonic crystals, can be used for next generation reflective-type color displays that can bend or fold. What's more, these microcapsules have characteristics that allows them to change colors based on varying temperatures, which would result in a more brilliant display panel." via Arirang

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

How does Kyocera's smartphone display prototype soak up solar power? "This week at Mobile World Congress in Barcelona, Kyocera is showing off a concept phone that uses its own display to convert the sun's rays into juice for its battery. While we've previously seen devices that harness the sun's rays via solar cells mounted on the chassis, Kyocera's prototype employs a transparent photovoltaic layer that can be placed on top of or beneath the touchscreen. The specific technology on display this week comes from a company named Sunpartner, which makes a power-generating display layer called the Wysips (What you see is photovoltaic surface) Crystal connected to a chip that manages and converts solar energy into power that can be stored in the device's battery. Sunpartner says Wysips is capable of delivering up to 5 milliWatt-peak/cm2, a figure the company expects to soon double thanks to next-generation photovoltaic materials. The layer is only 0.1 mm thick, making it easy to add to a device without impacting the aesthetic design. The company also claims that it will not impact the the display's touch capabilities. (Video)" via Gizmag

AMD's LiquidVR Technology Signals New Battleground For The GPU Wars "The holy grail of virtual reality is a concept known as presence. For a user to feel fully immersed in a virtual environment, the time between the user moving their head or hands and seeing that action reflected in the virtual space (defined technically as "motion-to-photon latency") needs to be minimal, or preferably non-existent. Reducing that latency involves a lot of moving parts, from the software to the GPU to the display technology inside of a VR headset. That’s the battleground, and it’s what AMD hopes to improve with LiquidVR. The company says it intends to bring "smooth, liquid-like motion and responsiveness to developers and content creators for life-like presence in VR environments powered by AMD hardware." AMD released the Alpha version of their LiquidVR SDK (software development kit) to developers today." via Forbes

ITO Recycling: A Green Ecosystem for Multi-Screen Era "One person having multiple devices is already an unshakeable trend. Moreover, manufacturing more display screens means ITO material consumption. Consequently, finding ways to create environmentally friendly recovery mechanisms for display materials in the multi-screen era will be an important link for the industry’s sustainable development. Environmental ITO recycling technology is beginning this solution mechanism. ...Currently there are two major sources of Indium tin oxide recycling. The first is ITO glass (such as displays, touch panels, and solar batteries). The second is ITO target materials. The former requires first breaking the materials into pieces, and then a chemical solution is used to filter out impurities and refine Indium tin. Afterwards, from the cladding material equipment, stripping and refinement can be carried out by directly soaking it in a solution." via CTimes

How will digital signage benefit from new reading speed technology? "Reading a text is something that each of us does at our own individual pace. This simple fact has been exploited by computer scientists in Saarbrücken who have developed a software system that recognizes how fast a text on a display screen is being read and then allows the text to scroll forward line by line at the right speed. The technology makes use of commercially available eye-tracking glasses, which are able to capture the motion of the user's eyes and convert this into a reading speed. Potential future areas of applications include electronic books or the large-scale displays used in railway stations and shopping centres. The research team will be showcasing its project from March 16th to March 20th at the Cebit computer expo in Hanover." via Phys.org

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

Retina MacBook Pro Users Complain of Anti-Reflective Display Coating Wearing Off "A growing number of users have turned to the Apple Support Communities, MacRumors discussion forums and Facebook in recent weeks to voice their complaints about the anti-reflective coating on Retina MacBook Pros becoming stained or wearing off. The long-standing display issue appears to affect several MacBook Pros, including mid-2012 to mid-2014 models sold between June 2012 and present. The anti-reflective coating appears to be wearing off under a variety of circumstances, including the pressure of the keys and trackpad on the display when closed, and the use of third-party cleaning solutions and microfiber cloths. While the issue is typically isolated to small areas of the screen, some users have shared pictures showing the anti-reflective coating wearing off across virtually the entire display." via MacRumors

Researchers create glasses-free 3D display with tiny spherical lenses "The most successful foray into the realm of 3D technology is probably the Nintendo 3DS, which has sold quite well by the standards of handheld game consoles. Part of that is effective use of 3D in games, but more importantly, you don’t need glasses to experience a 3D effect. Glasses-free 3D comes with drawbacks, but a team of researchers from Chengdu, China might have figured out how to make this type of 3D viable using spherical lenses in the display. ...Most people can tolerate a narrow viewing angle with a handheld device. But with anything larger, it’s far too inconvenient. The spherical lens display design featured in the new paper has the potential to boost the viewing angle of an autostereoscopic screen dramatically. The proof-of-concept display created by the researchers works at 32 degrees, with a theoretical viewing angle of up to 90 degrees. Additionally, microsphere-lens (MSL) arrays can be produced inexpensively using ball placement technology." via ExtremeTech

UniPixel Touchscreen Film Near Manufacturing "Texas-based UniPixel and its joint venture with Eastman Kodak Co. has been plagued with delays as it works on the underlying technology, which would use a similar process Kodak traditionally used to make film. The two companies announced in 2013 the joint venture that was expected at that time to turn out touchscreen sensor film by the end of that year from its Eastman Business Park plant. Now, nearly two years after that initial announcement, UniPixel CEO Jeff Hawthorne said the company expects initial commercial shipments in the second quarter of 2015." via Democrat & Chronicle

Qualcomm’s fingerprint tech turns touchscreen into Touch ID "The company has announced Snapdragon Sense ID 3D Fingerprint Technology at MWC 2015, a long name for what's shaping up to be a potentially big improvement in security ergonomics. Rather than a capacitive sensor, as used in Apple's Touch ID and on the new Samsung Galaxy S6, Qualcomm's approach uses ultrasonics so that it can sense through a variety of materials. ...That would mean pressing your finger against the display itself could be used to authenticate access, allowing for slimmer and more compact devices overall. Qualcomm says the sensor can see through sweat, grease, and hand-lotion, and other substances which would confuse a regular biometric scanner. Interestingly, an Apple patent suggesting just that sort of approach, embedding Touch ID into the touchscreen rather than in the home button, was spotted back in February." via SlashGear

AUO pushing 5 major selling points for panels "For 2015, AU Optronics (AUO) is pushing five major selling points for its panels to boost product demand. The points are Ultra HD resolution - AUO will upgrade all sizes of its panels to support Ultra HD resolution; curved display technology; integrated touch control technology; image improvement technologies such as wide color gamut and ultra-high dynamic contrast; and value-added functions for industrial, enterprise, car-use and wearable applications. The points were outlined from AUO president Paul Peng who added that AUO's aim for 2015 is not to gain market share but rather focus on profitability from high-end, differentiated products that outline AUO's technology advantages in the market." via DigiTimes

Flexible Hybrid Films For Longer Lasting Displays "The paper by polymer scientists Park Soo-Young and Cho A-Ra of Kyungpook National University describes a method to create a type of so-called "hybrid" film, composed of both inorganic and organic materials. A process known as the sol-gel fabrication technique can create hybrid films, but it, too, is less than ideal, because it requires the use of acids that corrode the metals and metal oxides in the devices' electronic components. … The hybrid films showed less depreciation in flexibility after 10,000 bending cycles than the inorganic layered films. Resistance of a material increases because of the formation of minute cracks as it flexes—just as it would when used in a flexible display screen. A film with higher resistance has lower electrical conductivity, meaning that more voltage must be applied to send a signal through it, which further degrades the material." via AsianScientist

NASA Is Developing Wearable Tech Glasses for Astronauts "The U.S. National Aeronautics and Space Administration is working on computerized glasses for astronauts that can guide them through how to repair a latch on their ship or conduct an experiment in space. NASA is teaming up with a San Francisco company called Osterhout Design Group, which makes augmented-reality glasses that project information onto the lenses. The plan is to create a system where how-to guides can be uploaded to the glasses, allowing astronauts to follow directions while their hands are full. NASA's engineering teams are working on integrating their software into the glasses and, later this year, will test them in an undersea lab to simulate the environment of space flight. Eventually, the device will be submitted to NASA's flight program team for its first trip into space." via Bloomberg

Visual science research is needed as displays get "There is an interplay between design, which makes the display attractive and can be for branding, and legibility. As displays get smaller, there is less room for flexibility and the exact balance between design (which is an artistic endeavour), and legibility (which can be measured with visual science) becomes more important. The trouble is, said Reimer, that there is not yet enough visual science to pin down the legibility end of the spectrum: “As displays get smaller, we must think much more cohesively. We need to get much more to the root of visual science to inform decision makers so they can balance design with science.” MIT AgeLab, together with typeface company Monotype Imaging, has developed a method for testing the legibility of typefaces on screens under glance-like conditions – an adapted form of ‘stimulus onset asynchrony’ (SOA) for use on a PC, by automotive manufacturers and human-machine interface designers for example."via Electronics Weekly

What did you think about today's news? Leave a comment here and share your thoughts.

Tuesday
Sep302014

Display Technology News Roundup 9.30.2014

Image via Flickr / That Hartford Guy

This 1980s General Motors Touchscreen Was Decades Ahead Of Its Time "For most drivers, the idea of a touchscreen that controls all of a car's functions is sci-fi that only recently became reality. However, in 1989 General Motors equipped its Oldsmobile Toronado Trofeo with a touchscreen system that was decades ahead of its time. Called the Visual Information Center (VIC), the touchscreen gave the driver access to everything from the radio to engine management data. (Video)" via Business Insider

How to build a real-time holographic display using doped liquid crystals "There are two common types of 3D display based on the principles of stereopsis (perception of depth). One exploits binocular parallax (the displacement in the apparent position of an object viewed along two lines of site), and the other makes use of light-field reconstruction. However, the ultimate goal is holographic display, which provides the most realistic 3D images of objects or scenes. This is because it can reconstruct both intensity and phase information, enabling the perception of light as it would actually be scattered by a real object, without the observer needing special eyewear. ...However, to show real-time, dynamic 3D images, there is a limited choice of suitable photorefractive materials with the necessary fast response and high modulation index to achieve a reasonable diffraction efficiency. This presents challenges in the choice of materials, devices, and system structures. Here we present a real-time holographic display featuring a liquid crystal (LC) doped with an azo (synthetic) dye. This material enables a video-rate display, since we can refresh each hologram on the order of several milliseconds." via SPIE

How are color-changing displays inspired by squids advancing LCD tech? "Scientists have long marveled at the squid's ability to sense the color of its surroundings, and then instantaneously change its own skin coloring in order to blend in. To that end, a number of projects have attempted to create man-made materials that are similarly able to change color on demand. One of the latest studies, being led by associate professor Stephan Link at Rice University, may ultimately result in improved LCD displays. The technology developed by the team currently consists of a prototype full-color display, which incorporates five-micron-square pixels made up of arrays of tiny aluminum nanorods to produce vivid red, green and blue-based colors. By electronically tuning both the length of the nanorods and the spacing between them, it's possible to alter the manner in which they reflect light – this in turn changes each pixel's perceived color." via Gizmag

Is the iPhone 6 Plus Display the Best Ever? "In its latest series of lab tests and measurements, DisplayMate called the iPhone 6 Plus the "best performing smartphone LCD display that we have ever tested." Specifically, the new 5.5-inch iPhone reached or broke records in a variety of areas, including highest peak brightness, lowest screen reflectance, highest contrast ratio, highest contrast rating in ambient light, most accurate intensity scale and gamma and most accurate image contrast. ...President Raymond Soneira wrote of the iPhone 6 Plus. "The iPhone 6 Plus is only the second Smartphone display (LCD or OLED) to ever get all Green (Very Good to Excellent) Ratings in all test and measurement categories (except for Brightness variation with Viewing Angle, which is the case for all LCDs) since we started the Display Technology Shoot-Out article series in 2006, an impressive achievement for a display. The iPhone 6 Plus has raised the bar for top LCD display performance up by a notch."" via CNET

Everything you ever wanted to know about display screen technology "On a glossier screen, less diffusion takes place, so the image appears sharper. Glossy displays may also be coated with an anti-glare finish to reduce distracting reflections; this means dark areas aren’t illuminated by ambient light as much as they would be with a matte screen, so the contrast of the screen appears to be greater. Choosing a screen type is a matter of personal choice as much as it is influenced by your environment and/or lighting conditions. As a rule of thumb, a matte screen makes sense for regular office work, or for a laptop that you intend to use while out and about; for games and movies, the vibrant colour and punchy contrast of a glossy screen may be more important – especially if the room lights will be darker." via PC & Tech Authority

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Blue phosporescent OLED lifetime increased by 10X "In a step that could lead to longer battery life in smartphones and lower power consumption for large-screen televisions, researchers at the University of Michigan have extended the lifetime of blue organic light emitting diodes by a factor of 10. Blue OLEDs are one of a trio of colors used in OLED displays such as smartphone screens and high-end TVs. The improvement means that the efficiencies of blue OLEDs in these devices could jump from about 5 percent to 20 percent or better in the near future. ...In collaboration with researchers at Universal Display Corp. in 2008, Forrest's group proposed an explanation for why blue PHOLEDs' lives are short. The team showed that the high energies required to produce blue light are more damaging when the brightness is increased to levels needed for displays or lighting. This is because a concentration of energy on one molecule can combine with that on a neighbor, and the total energy is enough to break up one of the molecules. It's less of a problem in green- and red-emitting PHOLEDs because it takes lower energies to make these colors of light." via University of Michigan

Is the display industry headed for a boom? "Foreign institutional investment analysts yesterday expressed an upbeat outlook on the global display panel sector, expecting the arrival of a rare boom unseen in recent years in the latter half of this year. According to James Kim, an analyst at Nomura Securities, expected windfall for the sector in the latter half of this year is attributed to expected constraints in production capacity that may persist for the next few years, and anticipated surge in demand for larger-sized LCD TV sets. Kim noted that it is difficult for larger-sized LCD display panel makers to initiate production capacity expansion currently amid an ongoing transition towards producing OLED panels. In addition, numerous panel makers have sustained tremendous losses since 2010, following a period of oversupply in the global markets, leaving them with little room to increase capital expenditure." via The China Post

Sharp aims to mass-produce new generation of display panels by 2017 "Qualcomm and Sharp said the new type of panel, called MEMS-IGZO after their respective display technologies, uses less energy and can withstand harsher temperatures than the liquid crystal displays (LCD) used in most smartphones and tablets. "LCD is really hitting its limits in a lot of things. We can go brighter and this is the first generation of this technology," said Greg Heinzinger, senior vice president of Qualcomm's technology licensing division and president of Pixtronix, at a briefing at Sharp's Tokyo office on Friday. ...Sharp said it will market the new technology to automakers, and makers of industrial devices, smartphones and tablets, and aims to start mass-production in 2017." via The Star

Are touchscreens going to be obsolete? "Although it’s too early to predict the end of an era for touch screens, it was interesting to hear Tetsuya Hayashi, one of the keynote speakers at Touch Taiwan, talking about development activities around post-touch screen technology in Japan. Hayashi, deputy director of Nikkei BP ICT Innovation Research Institute, illustrated the future of display technology as “ambient,” “free-form,” and “wearable.” Images, he foresaw, will be projected on any surface or in the air, instead of being constrained to a rigid, bulky box." via EE Times

Intel demonstrates a laptop with a second E Ink screen on the lid "The Asus Taichi line of notebooks feature screens on both sides of the lid — so when the lid is closed you find yourself holding a tablet. When it’s open, you have a laptop with a screen facing you and a second screen facing away. Now Intel is showing off a prototype of a laptop with a similar layout. There’s a screen on either side of the lid. The difference is the one that’s on top of the lid is a small, low power E Ink display. (Video)" via Liliputing

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Could Display Technologies Provide Camoflouge and Other Military Technologies? "Digital electronic display technologies, such as light emitting diode (LED), liquid crystal display (LCD), plasma, and digital projection, have advanced and proliferated rapidly in recent years. This has caused unit cost to decrease and quality and capability to increase. These technologies are no longer just for watching television or working on a computer. Massive LED screens are common on digital billboards, while nearly half of all Americans carry high resolution displays in their pockets in the form of smartphones. Displays are even beginning to break out of their traditional rectangular shape. LEDs can now be manufactured so that panels can be flexibly conformed to curved or irregular surfaces. Projection mapping techniques enable projectors to display images on three dimensional surfaces. All of these technologies have the potential to revolutionize the way the Navy operates for pennies on the dollar." via CIMSEC

How does an optical engine remove sharp pixels in displays? "Lemoptix has designed what it calls the world's smallest optical engine—25mm x 25mm x 12mm—and has worked to "despeckle" displays using proprietary technology. Without despeckling, a laser-driven display looks pixelised, with overly sharp pixels surrounded by obvious circles of black. Lemoptix has not revealed all the details of its despeckling algorithm, but it did reveal enough to win the Photonics West best paper award. In addition, Lemoptix has been to solve application problems to make its Hamamatsu modules easier for designers to use. For instance, it has built demonstration applications for heads-up displays on automobile windshields that work even in the brightest ambient light. It has also built 3D scanning solutions using structured light, embedded projectors for smartphones, and wearable displays for augmented-reality smart glasses." via EET India

TinyScreen thumb-sized display supports full color "Often the size of the screen controls how large your project is overall, and if you want small, TinyScreen is the ticket. TinyScreen is the size of your thumb and still supports full color. There are a myriad of uses for TinyScreen from homemade wearables to smart glasses to just about anything that can benefit from a small display. The screen uses OLED technology with 96 x 96 resolution, 16-bit color, and is designed to show data from the TinyDuino platform." via SlashGear

A 3D Display You Can Manipulate and Remotely Control "inForm is essentially a field of embedded pins that rise and fall independently to form shapes using information relayed by a computer. The creators of inForm describe it as a Dynamic Shape Display that can display real-time 3D information as well as receive input from users. Developed by MIT Media Lab‘s Tangible Media Group, it is able to display 3D information in real-time and in a more accurate and interactive manner compared to the flat rendering often created by computer user interface." via psfk

What's the difference between digital signage and touchscreen kiosks? "The most important difference between digital signage and touchscreen kiosks can be summed up in a single word: interaction. Enticing a visitor to interact with your message is a universal business goal. A touchscreen kiosk will provide you with all that digital signage can offer, but with an added layer of engagement. … Touchscreen devices are typically more expensive than equivalent-size digital signage monitors. In addition, the deployment of an interactive touchscreen kiosk requires a more in-depth design and development phase, so the software pricing can also be higher." via Digital Signage Today

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

How Could Virtual Reality Displays Transform Education? Oculus VR Interview "We showed the folks from the Smithsonian, we showed folks from a number of different industries—the automobile industry, the architecture industry—we’ve shown people the latest prototype, and they’ve gotten incredibly excited about the visualization aspect. Imagine, you could scan in everything in the Smithsonian—they have 130 million objects. Let’s get 10 percent of them or 20 percent of them. You could put on a pair of … sunglasses, and with those sunglasses you could see those objects and you could look around and you could see it so well and so clearly, and it would track so perfectly that your brain would believe it was really right in front of you. The next step past that is when you have shared space, and not only do you believe that this object is right there in front of me, but I look around and I see other people just like we see each other now, and I really, truly believe that you’re right in front of me. We can look at each others’ eyes. If you look down at something, I can look down at the same time. And it’s every bit as good as this. And if we can make virtual reality every bit as good as real reality in terms of communications and the sense of shared presence with others, you can now educate people in virtual classrooms, you can now educate people with virtual objects, and we can all be in a classroom together [virtually], we can all be present, we can have relationships and communication that are just as good as the real classroom." via The Chronicle of Higher Education

The first functional graphene-based flexible display has been produced "Graphene has been called a “magical” material that may hold the key to better electronic gadgets, both when it comes to device durability but also electrical abilities, as various research teams are figuring new ways to put the astonishing material to good use. … Researchers from the Cambridge Graphene Center and Plastic Logic managed to build the first such product, a flexible display that could equip a variety of gadgets in the future. “The new prototype is an active matrix electrophoretic display, similar to the screens used in today’s e-readers, except it is made of flexible plastic instead of glass. In contrast to conventional displays, the pixel electronics, or backplane, of this display includes a solution-processed graphene electrode, which replaces the sputtered metal electrode layer within Plastic Logic’s conventional devices, bringing product and process benefits,” a University of Cambridge report says." (Video)” via BGR

How Does New Augmented Reality Industrial Display Hardhat Protect Workers? "The DAQRI Smart Helmet has a hands-free wearable HD display with fully transparent optics that provide always-on functionality readable in both low light and bright conditions. It is described as “an elegant fusion of the most sophisticated display and sensor hardware with next-generation computer vision.” ...The Smart Helmet’s ‘True 4D’ display will enable organizations to provide intuitive instructions to their workforce. This should ensure that workers understand processes more quickly, spend less time on each step, and make fewer errors. (Video)" via psfk

The Story of Pixel Density and Touch Interface "It’s clear that the reason Apple chose precise scaling factor has been driven by the intention to produce crisp design with no compromise on antialiased UI elements rendering. It is often seen when you have a lot of 1pt stroke line in your design. Apple thinks for the developers and for the consumers too. From its original iPhone inception, Apple has been adamantly guarding how its User Interface will be rendered on user devices. The original iPhone to its iPhone 4S had exactly the same effective resolution of 320pt by 480pt. We praised Apple’s UI workmanship and its call on attention to detail. There is an interesting case of iPhone 6+ where Apple choose not to continue with the pixel-perfect scaling tradition. Read it here: The Curious Case of iPhone 6+ 1080p Display" via Medium

Should Touchscreens Be Built Into Every Desktop Design? "Like tablets before them, the ergonomics of these hybrid gizmos demand UI conventions that depart from desktop layouts of similar screen size. The hybrids not only need big touch targets to accommodate clumsy fingers, but they also need controls and navigation conveniently placed where hands naturally come to rest. Designing for touch introduces elements of industrial design: physical comfort and ease are critical considerations. Unfortunately, the top-of-screen navigation and menus of traditional desktop layouts are outright hostile to hybrid ergonomics. Tried-and-true desktop conventions have to change to make room for fingers and thumbs. For now at least, the solution is not just a matter of designing separate interfaces for touch and non-touch gadgets. That won’t fly, because as designers (and especially web designers) we often don’t have enough information about the device. After poking at this problem for a few weeks, my conclusion is: every desktop UI should be designed for touch now. When any desktop machine could have a touch interface, we have to proceed as if they all do. Walk with me." via Global Moxie

What did you think about today's news? Leave a comment here and share your thoughts.

Wednesday
Jul162014

Display Technology News Roundup 7.16.2014

Image via LG Display

LG Unveils Flexible Display That Can Be Rolled Up Like A Piece Of Paper "LG’s display division yesterday announced two new types of panels, a rollable 18-inch OLED panel and an 18-inch transparent OLED panel. ...Instead of using plastic to achieve this level of flexibility, LG said the panel is made out of a "high molecular substance-based polyime film". The transparent panel, as LG explained, has 30% transmittance, which is significantly higher than the 10% transmittance in existing transparent LCD panels. LG says that it achieved this by adopting the company’s transparent pixel design technology and incorporating it into the new display." via Forbes

How Epson Keeps Innovating With R&D "Projector technology too has developed step by step. The 3LCD technology that powers projectors used for offices, education and homes had its origins in 1977 when Epson started to develop the active-matrix LCD chips. In 1982 it introduced the TV watch and later shifted to polysilicon TFT systems, that ironed out picture quality and size issues. In 1984, the company commercialised the world’s first pocket-sized colour TV, the ET-10. In 1989 Epson used 3 LCD technology for its first brand projector and since then High Temperature Polysilicon (HTPS) has been the key component of 3LCD projectors. Ask employees at Epson and they will tell you that R&D is the heart of their organisation. Consumers, for instance have been experiencing Epson products with diverse uses." via The Hindu Business Line

Where Does LG Display Manufacture Its Innovative Technology? "I am at the largest screen factory in the world - LG Display's Paju Complex, in South Korea, on an extensive tour. ...In a bright white space-age showroom, Epic Kim shows us possibilities that OLED opens up. Some of these products have already made it to the market - just. LG sells a inwardly curving OLED TV, which is much more impressive than it sounds, and even a semi-flexible smartphone, named the G Flex. Other innovations have not found a product yet - take the insanely high-resolution smartphone screen that is twice as sharp as an iPhone, the 3D TV that does not require glasses, or the fully transparent touchscreen, which I found the most exciting. Why hide the innards of your new smartphone? Why buy a TV when your whole window can show a movie? Why buy curtains when your window can become a black screen?" via The Age

‘Sensor Salon’ brings LCD screens, 3D-printed objects and sensors to fingernails "That’s the vision of students from the Art Center College of Design in Pasadena, Calif., who presented their “Sensor Salon” project at Microsoft today — explaining how they created a prototype salon that brought together experts in design and development to create made-to-order technology for a client’s nails. Technologies embedded in the nails included small programmable LCD screens, and 3D printed objects and charms. ...Other possibilities would include haptic feedback — sensors that would trigger small vibrations that could help people with bad habits such as smoking." via GeekWire

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

What Happened At SID Display Week? IDTechEx Summarizes the Show "The impact of the emergence of Chinese manufacturing was not overlooked this year during SID last month, with the opening keynote talk delivered by Wang Dongsheng, president and co-founder of BOE, the largest Chinese display manufacturer. With over 20,000 usable patents and 4,200 patent applications, BOE is in growth mode on a massive scale, with 35% of its products globally launched in 2013. The company is obviously looking to make significant profits from the juggernaut that is the display industry, with an accumulated investment of $260 billion since 1990. Wang Dongsheng though used the term during his keynote "The display industry is suffering from success", referring to its low profitability." via Printed Electronics World

How flexible, micro-thin displays could revolutionize liquid crystal technology "A new research study published in this week's journal of Nature has shown the proof of concept for using what are known as 'phase change materials' – materials that can rapidly switch between amorphous and crystalline states when heat or electrical charge is applied – as building blocks for a whole new generation of ultra-high resolution displays. ..."The main advantage of these displays is not only that they have ultra-high resolution, but also are solid state that can be put on highly flexible films," said team leader Harish Bhaskaran, a materials scientists at Oxford University in an interview with Yahoo Canada News. "Also, power consumption is low and in many respects it can retain the image until you go and change it, so no power is required when the image is static, unlike conventional screens that require refreshing," added Bhaskaran." via Yahoo! News

Why is Samsung the only one buying AMOLED displays? " ZDNet Korea did an interview with Samsung Display CEO Park Dong-Geun specifically on this topic, and he had a little more to say on it, specifically what Samsung Display is going to do about it. Park talked about Samsung’s current expansion into China and other markets where its devices are at saturation point, and would like to see expansion of its display division into these territories as well. Right now LCD is the most popular form of display on devices, particularly mobile ones, and Samsung wants to try to convince device manufacturers that AMOLED is the way to go, as they say it provides a richer user experience by giving the user better visuals. Right now they have to fight the fact that they are the largest consumer electronics company in the world, and as such many are likely choosing to support the underdog rather than the big dog." via AndroidHeadlines

How is Jaguar Land Rover enhancing the automotive display experience? "The car maker unveiled its 'Jaguar Virtual Windscreen' concept that uses the windscreen as a display to project information like racing line and braking guidance, ghost car racing and virtual cones. Jaguar Land Rover Research and Technology director Dr Wolfgang Epple said, "By presenting the highest quality imagery possible, a driver need only look at a display once. "Showing virtual images that allow the driver to accurately judge speed and distance will enable better decision-making and offer real benefits for every-day driving on the road, or the track." (Video)" via Automotive Business Review

How does new transparent touchscreen display work on both sides? "Their TransWall is not only transparent, but it can also receive input and display content on either side of its screen, plus it's capable of haptic feedback. The system is housed within a T-shaped frame that also incorporates two overhead-mounted projectors, which project visuals onto either side of the screen. That screen is made up of two sheets of plexiglass, with a clear holographic film sandwiched between them. Bordering those sheets are two rectangular infra-red touch sensor frames, one on either side. A surface transducer is also mounted in the plexiglass above the frames, plus microphones are integrated into each of them." via Gizmag

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Waterproof, glare-free phone screens invented "The team at The Institute for Photonic Sciences in Barcelona, in conjunction with Corning Incorporated (the makers of the tough Gorilla Glass adorning many of today's premium smartphones) developed a novel technique of "roughing" the glass surface without sacrificing transparency. ...This discovery has strong implications for the mobile industry, where similar effects can only be produced by polarising filters placed over the screen. But these filters can interfere with the capacitive touch interface of many smart screens, a problem Pruneri's team believes may not be the case with their "roughening" method." via Wired

takee Holographic Handset Disrupts Traditional Technology "After 10 years of research and development, takee holographic handsets are taking the lead in handset screen display technology, making a disruptive breakthrough in the field. ...Something of note is that the takee holographic handset is fundamentally different from Fire Phone handset recently released by Amazon. Fire Phone's display technology is not a naked-eye 3D display technology, but rather employs Dynamic Perspective 3D technology, in actuality a form of 2D display technology. In other words, what one is observing is a dynamic expression of a traditional 2D handset instead of a visual display of holographic technology. In this regard, the takee holographic handset outdoes competitors by jumping ahead one generation." via Consumer Electronics Net

How is the digital signage industry being threatened? ""The industry faces tough competition from ordinary consumer television products that are being used by commercial establishments instead of specially outfitted digital signage displays, and the result is a loss for the signage industry as sales go instead to consumer-type replacements." Digital signage panel manufacturers and set makers can capitalise on existing advantages offered by the technology. These include high-brightness displays of 1,000 to 1,500 nits without compromising display lifetimes; ultra-narrow bezel displays for data visualisation; ultra-high-definition displays in high-end applications such as architecture firms and medical operating theatres; and touch, gesture or embedded vision for segments like education, for use in interactive whiteboards." via InAVate

Is the iPhone 6 Sapphire Crystal Display Really Unbreakable? Watch the Test "In an effort to test just how durable the suppose 4.7-inch iPhone 6 panel is, Marques puts it through a serious of gruesome tests, first by stabbing it with a knife, and then with a set of keys. He goes at it pretty hard, too—harder than your average phone would see on a daily basis—and the panel is essentially left unscathed. Even the sharp knife is no match for the sapphire crystal, inflicting zero damage. It’s incredibly impressive. Say good-bye to screen protectors once and for all. (Video)" via TechnoBuffalo

Does display form factor matter? "The way I see it, Google Glass is an early shot at making the computer disappear, at making it hide in the furniture. The true ideal form factor is one that isn’t there at all. It’s just a pure human interface. No friction. ...But even screen size can be handled as a relative matter. Apparent screen size is a function of distance between the viewer’s eyes and the screen and its actual dimensions. A 13cm (5.1”) screen held 60cm (~2’) away takes up the same field of vision as a 130cm (51.2”) screen at 600cm (~20’). You can watch a movie on a phone at two feet or on a big TV at 20 feet." via Forbes

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

Is the world finally ready for Virtual and Augmented Reality? "The year is 1979 and Richard Bolt, a student at MIT, demonstrates a program that enables the control of a graphic interface by combining both speech and gesture recognition. ...To this day, Richard’s research speaks to the core of what natural gesture technology aims to achieve, that “natural user modality”. While advances in HMI have continued to iterate and improve over time, the medium for our visual interaction has remained relatively intact: the screen. Navigation of our modern UI has been forced to work within the limits of the 2D screen. With the emergence of AR and VR, our traditional forms of HMI do not provide the same accessible input as the mouse and touch interfaces of the past. Our HMI must evolve to allow users the ability to interact to the scene and not the screen." via Games Alfresco

What's the Secret to Tackling Three Touchscreen Design Challenges? "The secret to achieving the low energy, high performance capacitive sensing is a hardware-based capacitive-to-digital converter (CDC). The CDC consists of two current digital-to-analog converters or DACs. The first is a variable DAC that delivers the current to the external sensor capacitor, and the second is a constant current source for an internal reference capacitor. Capacitance is measured using successive approximation registers (SAR) which is an efficient process immune to DC offset and requires no external components. The CDC improves accuracy and noise immunity by performing a two-stage discharge of the external capacitor to remove ambient noise energy captured during the discharge process. The CDC offers a wide dynamic range by adjusting gain and reducing source current to change the charge timing and more directly reflect the voltage at the capacitive sensor when the source current and series impedance are both high (i.e., such as when using a touch panel or ESD protected capacitive pads)." via Silicon Labs

How healthy is the medical imaging display market? "The worldwide market demand for medical imaging displays used in clinical review, medical diagnostics and surgical procedures, is showing strong growth, according to the new NPD DisplaySearch Specialty Displays Report. Between 2013 and 2017, global revenues for the displays used in surgical procedures and clinical review are each expected to grow at a compound average rate of 9%. Growth in diagnostic displays is forecast to increase 5% per year. ...The number of radiology investigations continues to increase annually, spurring growth in the diagnostic display market. The 21.3in display, now comprising 67% of the market, will continue to dominate this category. However, due to specialised panel and backlight requirements, few manufacturers participate in this niche market. Those that do participate have limited capabilities and some run on older, less-efficient production lines. Therefore, the costs to produce these panels are higher than the more commoditised displays, which results in relatively stable ASPs." via Installation

Pilot's Eye View of the F-35 Head-Up Display "The Rockwell Collins ESA Vision Systems F-35 Gen III helmet mounted display provides unprecedented situational awareness for pilots. AINtv spoke with F-35 Lightning II Chief Test Pilot Alan Norman about what makes this head-up display special. (Video)" via AINtv

Display Industry Trends – Survey Results "The two questions on laser phosphor projectors seemed consistent with what was discussed at Display Summit a couple of weeks ago. But nearly 1/3 don’t see the technology becoming a mainstream product, a bit higher than I would have expected. This probably means that lamp-based projectors will become value products - and there will continue to be a market for them. On the question of lumen output in 5 years, some are very bullish (17%) seeing the technology enabling projectors with over 35K lumens of light output. Many were unsure about this question." via Display Central

What did you think about today's news? Leave a comment here and share your thoughts.

Saturday
May312014

Display Technology News Roundup 5.31.2014

Image via Wired

How Did Oculus Rift Make Virtual Reality Real? The Inside Story "But even these couldn’t give Luckey the immersion he craved. When he put them on, he felt like he was looking at a play space, not living inside of it. “It wasn’t garbage,” Luckey says, “but it wasn’t virtual reality.” The image quality was poor, because the transmissive LCDs weren’t high-contrast. The head-tracking latency was off the charts, causing a nauseating lag every time he turned his head. But most of all, the field of vision was too narrow. He could always see the edge of the screen, which meant his brain could never be truly tricked into thinking it was inside the game. Luckey figured that he had as good a chance as anyone to solve those problems. So he tinkered, and tinkered some more, and one night in November 2010 he announced to the world—or at least to the message-board denizens of a 3-D-gaming news site called Meant to Be Seen—the existence of PR1 (for Proto­type 1), his first stab at a virtual-reality device. It was a cumbersome beast, built on the shell of a headset from his collection. It displayed only in 2-D and was so heavy that it needed a 2-pound counterweight in the back. But thanks to a massive chassis that could fit a nearly 6-inch display, it boasted a 90-degree field of vision, an angle nearly twice as large as anything else on the market." via Wired

How Can New Transistors Bring Flexible Screens Closer to Reality? "The electronics world has been dreaming for half a century of the day you can roll a TV up in a tube. Last year, Samsung even unveiled a smartphone with a curved screen, but it was solid, not flexible; the technology just hasn’t caught up yet. But scientists got one step closer last month when researchers at the U.S. Department of Energy’s Argonne National Laboratory reported the creation of the world’s thinnest flexible, see-through 2D thin film transistors. These transistors are just 10 atomic layers thick--that’s about how much your fingernails grow per second." via PCB Design 007

Tribute for liquid crystal display pioneer "Mathematician Frank Leslie, who died in 2000 aged 65, developed a theory of liquid crystals while working at the University of Strathclyde. ..."Engineers use the Ericksen-Leslie equations to optimise their flat-screen displays, making them thinner, faster and higher resolution. "Chemists use the Leslie viscosities to help make new improved liquid crystal materials, which can be used for both displays and for other applications, such as in biology. Professor Leslie's research is so influential that if you look around, you will probably spot at least one screen - maybe the computer screen you have on your desk or the mobile phone in your pocket - that has been developed with the aid of his equations."" via BBC News

Industry's first non-ITO film-based 42" display "The module was built by Amdolla Group, a leader in advanced touch module manufacturing, using Cima NanoTech's highly conductive, silver nanoparticle-based, SANTE® FS200 touch films. ...With a scan rate of 150hz for 10-point multi-touch, rivaling the response time of smartphones and tablets, this jointly developed product dramatically increases the speed of large format touch displays. Unlike optical and infrared touch solutions, this module does not have a raised bezel for a smooth cover glass. In addition, the random conductive mesh pattern formed by SANTE® nanoparticle technology eliminates moiré, a challenge for traditional metal mesh technologies, thus enabling touch screens with better display quality." via Printed Electronics World

Medical Imaging Display Market Shows Robust Growth "In the surgical display market, larger screens with higher resolutions are becoming more common and affordable and many are already being installed in surgical rooms, as collaboration among medical professionals, both on-site and virtual, becomes more popular. ...In addition, several key trends in the flat panel display market, including the shift to LED backlights, large, high-resolution 4 MP and 6 MP displays that can be split, color displays that can accurately show both color and grayscale images, and the wide availability of 4K displays, is expected to have different impacts on the various segments of the medical imaging market." via eWeek

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

How does oleophobic/hydrophobic coating enhance display glass durability? "Abrisa Technologies introduces CleanVue PRO™, a severe abrasion resistant oleo/hydrophobic coating that repels dirt, dust, water, grease and oil, enhancing display glass performance and longevity. This protective coating is well-suited for high performance anti-reflective (AR) coated cover glass for displays used in high contrast, heavy use and/or harsh environments. The resulting coated surface is easy-to-clean and maintain, does not stain, allows repeated removal of fingerprints, all while maintaining its anti-reflective properties. CleanVue PRO™ is ideal for protective vehicular instrument control panels and devices, field use touch and display panels, projected capacitive (PCAP) and capacitive touch screens, portable handheld devices, teleprompters, virtual reality applications, in-flight and vehicular entertainment screens and a host of other display devices." via ThomasNet

Will the Demand For Higher Generation Glass Substrates Drive Corning’s Display Volumes? "Glass substrates are manufactured in different sizes which are indicated by the “Generation”. Higher Generations have a larger area. Display panel manufacturers prefer higher Generation glass,specifically Generation 8, since it is much more economical. In the third quarter of 2010, 41% of LCD TV panels were produced using Generation 8 LCD glass. By third quarter of 2013, the number increased to 87%. Additionally, with improvements in glass manufacturing process, higher Generation glasses are becoming thinner and lighter and can be used to produce display panels for a variety of other devices, such as smartphones and tablets. In the third quarter of 2010, the use of Generation 8 glass substrates was limited to LCD TVs and monitors. However, by the third quarter of 2013, Generation 8 glass substrates received acceptance in display panels for notebooks, tablets and smartphones, albeit accounting for a small proportion. The over demand for Generation 8 glass substrates is expected to increase 3% by the third quarter of 2014." via Trefis

Display industry prepares for SID 2014 "The 51st SID International Symposium, Seminar and Exhibition, or Display Week 2014, will take place June 1-6, 2014 at the San Diego Convention Center in San Diego, Calif. Display Week is the premier international gathering of scientists, engineers, manufacturers and users in the field of electronic information displays. For more information on Display Week 2014, visit www.displayweek.org or follow us on Twitter at @DisplayWeek. Display Week-related tweets can be created, viewed and shared using the hash tag #SID2014." via IT Business Net

Will Sony and Panasonic form OLED Display Panel Collaboration With Japan Display? "Cracking the cost formula for big OLED TVs is still a challenge for the industry as a whole, but Japanese manufacturers hope they may still have chance to compete against South Korean rivals in smaller-size panels through a three-way tie-up, one of the people said. Japan Display, owned around 35% by a government-backed fund, is the world's biggest maker of smartphone and tablet displays and has a pilot line at its plant to develop OLED screens. Having listed its shares in March, the company itself was formed two years ago through a merger of the LCD units of Sony, Hitachi Ltd. and Toshiba Corp." via The Wall Street Journal

Why Did Samsung Blow Large Screen Smartphones? "A recent Canalys report noted a trend showing demand for larger displays shifting to premium smartphones. But, despite the company's dominance in the large-screen smartphone category, Samsung may be missing the boat. In Samsung's most recent quarter, the company reported slowing demand for its premium smartphones. And despite increases in total smartphone shipments, profits for the company's mobile business actually declined. What Samsung failed to realize: When larger displays are reserved for premium devices, the high value of the feature can be used to support a company's premium pricing tier and help buyers quickly identify a company's flagship products." via The Motley Fool

Can augmented reality be made more comfortable? ""Minimizing visual discomfort involved in wearing AR displays remains an unresolved challenge," says first author Hong Hua of the University of Arizona. "This work is making a significant step forward in addressing this important issue." A lightweight, compact and high-performance Google Glass-like device-called an optical see-through head-mounted display (OST-HMD)-could potentially be "a transformative technology to redefine the way we perceive and interact with digital information," Hua says. For example, it could one day allow a doctor to see computed tomography (CT) images overlaid on a patient's abdomen during surgery or provide a new way to train soldiers by incorporating 3-D virtual objects into real-life environments." via Space Daily

'Thermal Touch' Tech Turns Any Surface Into a Touch Screen "Sure, wearable headsets are practical and fun, but are they reaching their full potential? Not according to augmented reality firm Metaio, which this week unveiled a thermal imaging system for use in AR headsets. The company's initial Thermal Touch prototype attaches infrared and standard cameras to a tablet, which then tracks the heat signature left behind when you touch a surface. Still about five or 10 years away from hitting the market, the technology will eventually focus on heads-up displays (HUDs) or interactive spectacles. (Video)" via PC Magazine

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Taking touchscreens into the third dimension "While some end users will continue to prefer designs with buttons and knobs, touchscreens have become sufficiently robust and low cost to make them a viable alternative. ...Microchip has taken it to a new dimension. Literally. Using its GestIC technology, user interfaces can be taken into the third dimension, allowing gesture recognition at distances of up to 15cm from the sensor. The chip containing the GestIC technology is the MGC3130, which features a low noise analogue front end, integrated digital signal processing unit, frequency hopping against noise and recognition of XYZ positional data – most specifically hand gestures. "There is also preprocessed gesture recognition [on the chip]," said Duvenhage. "You could do normal waves in specific direction, or you can do more complicated gestures, like a circle or the equivalent of what we call an 'air wheel' where you can adjust something by rotating your hands clockwise or counterclockwise."" via New Electronics

How can military augmented reality displays be commercialized? "ARC4 isn’t a pair of sci-fi glasses; in fact, it’s not a hardware system at all. Rather, it’s is a software system that accepts inputs from a sensor module made of cameras, satellite information, and head tracking technology, and fuses it all into a display that can be overlaid onto someone’s field of vision. Functionally, the end product makes walking around look a lot like playing a first-person shooter game like Halo. In the military, it provides real-time information to soldiers about their environments, even if their vision is obstructed. ...In a military setting, ARA has used hardware like BAE System’s Q-Warrior display—a large, expensive device that fits in on the battlefield but never takes off in a store. But the ARC4 systems don’t have to be installed on huge devices, says Allan York, ARA’s senior vice president. “Essentially, in a package the size of a sugar cube, you can have the sensing components necessary.”" via The Daily Beast

Is hologram-guided heart surgery a heartbeat away? "This proprietary digital technology from RealView Imaging in Yokneam projects hyper-realistic, dynamic 3D holographic images of body structures “floating in the air” without the need for special glasses or a conventional screen. The physician can literally touch and interact precisely with the projected three-dimensional volumes, providing an unprecedented tool for planning, performing and evaluating minimally invasive surgical procedures. Cofounder Shaul Gelman explains that the breakthrough technology can be summarized as very rapid printing of light in free space. The system is fed with data from standard medical imaging sources, such as ultrasound." via Israel21c

WORM display lets you write with light "Scientists at Universiti Malaysia Pahang (UMP) have developed displays that can be written on and erased with light. The WORM (Write Once Read Many) display is an optical storage device whose molecular geometry can be altered by shining light on it, allowing information in the form of words or pictures to be impressed on it in as little as 20 seconds. The environmentally-friendly display is also easy to dispose of, the researchers report, as users only have to scratch its surface to remove its protective coating and dip it in water to dissolve it. The displays are created using highly photosensitive compounds and can be written on using ultraviolet (UV) light. To fabricate the display, the researchers mix the compounds with liquid crystals and create two substrates. Transferring information involves placing a photo mask containing the data on top of the second substrate and exposing it to UV light with a wavelength of 365 nm." via Gizmag

A Crazy Levitating Display, Made With Particles and Projectors "Pixie Dust, as the team is calling it, builds on their previous system, which used a four-speaker array to summon objects into the air and move them around in three-dimensional space. ...Projection-mapped particulate ghosts are likely still a ways off. Still, the demos here are a fine holdover–and a reminder that our the possibilities of next-gen displays extend to far more than pixels trapped in a frame. (Video)" via Wired

Tactile touch technology "A conventional tactile touch system (e.g., smartphones) presents the same sensation over the entire surface so that all fingers coming into contact with the surface experience the same sensation. In contrast, the new NLT tactile touch technology provides regional stimulation, which is provided by electrostatic force. The electrostatic force is generated by the beat phenomenon in a region where excited X electrodes cross excited Y electrodes, which presents tactile sensation to the users. The tactile touch technology applied to the panel provides multi-finger interaction." via SPIE

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

Display panel makers steaming ahead at full capacity "Industry research institute WitsView recently stated that a momentous boom is poised to carry the panel-making sector through the third quarter, straining production at near capacity. According to the institute, the display panel industry is in the early stages of a transition toward newer product specifications, resulting in strained production output as companies work toward improving manufacturing yield rates and materials consumption efficiency. In addition, the rise of new panel specification is expected to divert limited production capacity from more conventional display panel formats and constrain supply." via The China Post

Could Apple use solar-charging touchscreens on future iPhones, iPads, or iWatches? "The new patent describes a “solar cell stack-up configurations” that includes one or more touch sensor layers and one or more solar cell layers. ...“Using solar cells on portable devices, particularly handheld portable devices with small form factors, however, poses certain technical and/or design problems. For example, the small size of the portable device means there is a small surface area which can be used for placing solar cells. This surface area is typically further reduced by other components that appear on the surfaces of the devices such as input devices and display devices. Since the maximum solar energy that can be produced from a solar panel is roughly proportional to the surface area of the solar cells, this reduces the amount of solar energy that may be gained from the solar panel,” the patent read." via Digital Trends

Will ITO disappear as a display manufacturing material? "Similarly, we all know about indium tin oxide, the transparent conductor commonly known as ITO, and the crucial role it plays in LCD manufacturing and in touchscreens. Some estimates say that more than 80% of indium use is in these applications, and the stuff is used in other areas such as solar PV arrays, too. I’ve heard a few voices that say the price will just continue to rise and rise, and companies will be lucky to get enough to make their screens. They may want to pause to draw breath. Companies like Kodak and Cambrios have been working on the printing of very fine silver wires. By fine, think much thinner than one micron. Because of the conductivity of silver, this still works in carrying sufficient current to an LCD pixel or identifying location on the surface of a touchscreen. ...This doesn’t mean that ITO use will be eliminated. Indium is a by-product of zinc production, by and large, and so the price could likely drop a long way before hitting negative gross margins. That means the cost of ITO can also drop a long way. It seems likely that silver wires and ITO could share the display and touchscreen markets, maybe with silver wires dominating in areas where power consumption is critical. But the idea that indium price and demand will just continue to rise indefinitely is likely wrong." via InvestorIntel

How the US Navy Is Pushing the Touchscreen Envelope "The Navy will soon field its first 3-D Weapons Launch Console Tram Trainer at the Submarine Training Facility in Pearl Harbor, Hawaii. ...The screens — some up to 55 inches — are not just touch-sensitive but pressure-sensitive. There’s no mouse-clicking to make things happen; sailors are expected to reach out and “grab” the objects they want to manipulate. ...In fact, this simulator is pushing the state-of-the-art in haptics, or tactile feedback, and is helping to move the simulation industry itself to a new level." via DefenseNews

Automotive Displays: Visteon OASIS Cockpit Concept "Optimized. Adaptable. Secure. Intelligent. Seamless. In collaboration with Cisco, this cockpit concept securely connects all aspects of the vehicle to the user profile and cloud services. It uses a secure data pipe that actively switches methods (modem, phone tethering, WiFi®), while maintaining a seamless connection to the cloud. This makes the cockpit adaptable through personalization, off board computing and intelligent vehicle module updates - giving the user and auto manufacturers intelligence about user interactions and preferences to improve the HMI experience. For more information about this and other exciting concepts, visit visteon.com. (Video)" via YouTube

What did you think about today's news? Leave a comment here and share your thoughts.

Monday
May192014

Display Technology News Roundup 5.19.2014

Image via HMI Project

Why mobile and touchscreen HMI are the future "Concurrent with the trend to consumerize HMI, we're seeing an increase in mobilized HMI. Not surprisingly, given all these new devices connecting to the plant, security is becoming an issue. Other HMI trends include TVized large flat screens, increased use of thin clients, a broader view of data on the screen, and everything HMI coming at a cheaper price. ...Another aspect of HMI attractive to young engineers is TV-like screens. "We have graphics on 19-inch monitors that can be used on the machine. It's not a touch panel, but most shop guys don't like touchscreens," Randy Pearson, international business development manager at Siemens, said. "Touch is still new to all of us. Newer and younger engineers will bring touch in, and then it will be prevalent."" via Design News

How Polaroid used LCD technology to avoid becoming irrelevant "Polarized technology, which was invented by Polaroid Founder Edwin H. Land was first used in goggles supplied to World War II pilots and has since been used in nearly every aspect of visualization, including the polarized sunglasses we wear today. ...With these three traits in mind: visualization, sharing and affordability, Polaroid went out on a venture to find new product categories that would embody the essence of the brand. ..."Every LCD flat-screen television has a polarizer on it. It’s a core component of the technology that allows you to view the picture on a flat-screen TV," says Hardy. Fulfilling the visualization component of the Polaroid brand as well as the concept of sharing and affordability (by making the televisions at a price point that would appeal to the masses), flat-screen televisions hit on all of the brand attributes Polaroid identified, making this product category a natural fit." via Fast Company

How do 3D displays work? Passive, active, glasses and glasses-free 3D "Active 3D works on plasma and LCD TVs and requires a set of powered glasses to make the 3D image. ...These active glasses work by having lenses that have a liquid crystal layer applied to them. When voltage is applied to the lens, it turns almost completely opaque; without, they are almost completely clear. There is some light loss when you're looking through the lens even without a current applied, and it's this that can make the TV image seem a bit darker when you're watching with them on. ...To produce a 3D picture, the TV displays the image for the left eye, then the image for the right eye. While it does this, the glasses shut out the light to the opposite eye. This happens 24, 25 or 30 times per second for each eye, so it is nearly impossible for you to tell it's happening, although some people do complain of flickering, and this might be why there are reports headaches with active 3D for a minority of users." via Expert Reviews

How MIT Is Building an Affordable Hologram-at-Home System "Over the past three years, researchers in the Camera Culture group at the MIT Media Lab have steadily refined a design for a glasses-free, multiperspective, 3-D video screen, which they hope could provide a cheaper, more practical alternative to holographic video in the short term. Now they’ve designed a projector that exploits the same technology, which they’ll unveil at this year’s Siggraph, the major conference in computer graphics. The projector can also improve the resolution and contrast of conventional video, which could make it an attractive transitional technology as content producers gradually learn to harness the potential of multiperspective 3-D. (Video)" via MIT News

How to create your own privacy display "The necessary materials are an old LCD monitor, superglue, paint thinner (or another solvent), paper towels, a screwdriver or drill, a pair of old glasses, and an x-acto knife or box cutter. If you follow the steps below, posted on Instructables by Dimovi, an electrical engineer based out of Austin, you can easily create your own privacy monitor. You’ll be free to have covert TV-watching and web surfing experiences in no time." via psfk

Sony sidelines OLED TVs for 4K sets "South Korean rivals LG Electronics and Samsung Electronics have moved ahead of the Japanese company in this field. Sony does not see real demand for OLED TVs taking off anytime soon, whereas its 4K LCD TVs are generating revenue now and could help its TV business return to the black for the first time in 11 years in the year to March 2015. 4K TVs are priced around 100,000 yen ($970) higher than regular flat-panel TVs." via Nikkei Asian Review

Will bigger displays bump Apple past Samsung? "In fact, smartphones with a five inch and larger screen increased 369 percent, a growth rate that is much higher than the market in general. Devices in this category made up 34 percent of shipments, including a high of 43 percent in Asia Pacific. ...This appears to be bad news for Apple Inc., right? Yes and no. For now, since its screens are on the small size, this is definitely holding the company back. Moving forward, when Cupertino decides to “go big,” it will be in position to make up a lot of ground in a relatively short period of time. In other words, you can guarantee that Samsung is not looking forward to the day that Apple rolls out a larger screen." via The Bibey Post

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Are mobile resolutions really that important these days? "The QHD display from LG isn’t something to sneeze at, but I do think it’s a waste for mobile technology. Even on a 5.5-inch screen, a 2560x1440 resolution seems like it’s total overkill. On a bigger screen, like for a computer or especially a TV, then yeah, that kind of resolution would be really nice; but a smartphone? Even on my HTC One, which has a 1080p display, is damn near impossible to tell where one pixel ends and where another begins. The clarity of phones is fine. What we need now is better battery life, stronger phones, and really just about anything else on a phone. But the naked human eye, even with perfect vision, will only ever be able to see so far. I’m pretty sure we have already reached that point when it comes to mobile displays. I’m pretty sure we’ve already passed it, even before this point." via PhoneDog

How digital signage is revolutionizing automotive showrooms "The dealership's [Audi City in Mayfair, central London] star attractions are the four so-called powerwalls -- nearly floor-to-ceiling screens that display a customer's chosen car. The powerwalls, created from 36 backlit LED display screens almost seamlessly joined together, are linked to high-definition touch screens mounted on tables where cars can be configured. Consumers choose the model, color, engine and other specifications on the table, then swipe the screen to send the completed car to the wall. There they can spin it around, peer inside, open the doors and trunk and even watch it drive off, complete with authentic engine noises. As with the latest iPad interaction, commands are instantly and smoothly relayed. The effect is mesmerizing. ...According to Audi, digital technology has had a powerful effect. Sales at Audi City London are up 60 percent from the traditional Audi showroom that previously occupied the site, Hanschur says, without giving exact figures." via Automotive News

What is OLED? The next wave in display technology "When color television debuted in the 1960s, picture tubes made color by electronically combined light from red, green and blue pixels. Today's dominant big-screen TVs use liquid crystals to switch a source of light on or off behind pixels. In OLED displays, "blue is the weak link, from a life and energy-efficiency perspective," said Mahon. "It's a high priority to develop deep, long-lived blue OLEDs to complete our suite of colors." Red and green OLEDs are rated to last more than 20 years, but blue lasts only about four years. Blue OLEDs used in smartphones and other devices are fluorescent OLEDs, a different type that aren't as efficient, Mahon said, and are made by a half-dozen companies, such as Dupont and Idemitsu Kosan of Japan." via CED Magazine

How can avionic displays be safer? Engineers find way to lower risk of mid-air collisions for small aircraft "At issue are cockpit displays of traffic information (CDTIs). These are GPS displays used by private pilots to track other aircraft in their vicinity. However, pilots often focus on the closest aircraft on the display—a habit that can pose a significant hazard. ...Researchers modified the CDTI so that the plane that would cross a pilot’s path first either began blinking or was colored yellow. The researchers tested the modified CDTI in a flight simulator with a panel of licensed recreational pilots. The research team compared the pilots’ response times and decision-making accuracy when using the modified and unmodified displays." via R&D Magazine

How will new military displays help soldiers on the battlefield? "The Q-Warrior, the latest version of BAE Systems’ helmet-mounted display technology, looks like a fighter pilot’s head-up display but has been specially designed for the soldier who needs unique capabilities, such as identifying hostile and non-hostile forces, as well as coordinating small unit actions. Paul Wright, Soldier Systems’ business development lead, and Mark Wilkins, project technical lead for Q-Warrior, explain: “Q-Warrior increases the user’s situational awareness by providing the potential to display ‘eyes-out’ information to the user, including textual information, warnings and threats."" via IHS

How will the Apple touchscreen develop? New Patent Shows Hints "Just over a year ago, the first detail of a patent describing a potential wraparound display for an Apple device cropped up. In the diagrams, the device had a screen that went clear around the sides and looped over the back as well, covering most of the phone except for the top and bottom. Though that patent came out well before the iPhone 5S, it may have been too soon for Apple to put the design into practice, as flexible screens and tech has a ways to go yet — as can be seen by Samsung (SSNLF.PK) and LG’s “flexible” smartphones that bend just a few degrees. The design, though novel, also seemed a bit impractical, as very few people can reasonably need a phone with a screen they can only see half of at any given time. This latest patent blends a bit of the novelty of the earlier design with more practicality. Rather than suggesting a screen that wraps all the way around the device, it stops short, only going partway around one side or both [sidewall]." via Wall St. Cheat Sheet

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

How is digital signage taking creativity to new levels? Interactive street display brings TV show to life "Live Vinyl is a display technology developed by Future Colossal, and it is employed in this case to create a living, breathing version of an intersection in Victorian London with carriages darting by, fog rolling in and birds flying about. The technology was inspired by the artwork of Jim Campbell, who is known for working with LED light installations, and incorporates techniques used in projection mapping. “We align the images of an ultra high-resolution print with an image rear-illuminated by low-resolution LED walls,” Lee-High explains. “The LED walls bring life to the printed image by changing dynamic lighting, creating effects and showing AI [artificially intelligent] characters.” “When viewing the display, one looks both at and through the image,” according to Lee-High. “It is an effect the people have not seen before, and it is fun to watch them try and figure out the magic that is making it visible." (Video)" via Fast Company

Intel creates floating display "Intel Corporation has come out with a 3D interface that allows users to make interact with devices by touching illusions created in the air. The technology creates an interactive 3D illusion with the help of a 3D camera and a special type of glass, says a report from BBC. ...In the near future, such technology could be located in public places like cash dispensers or photo booths; providing a more secure and hygienic experience, according to its developers." via ValueWalk

Innolux becomes world leader in displays for automotive market "Innolux at the end of last year managed to best its closest competitors, Japanese firm Japan Display Inc. and Sharp Co., and maintained its advantage over South Korea's LG Display, ranked fourth in the world in the sector. In fifth place in automobile screen sales at the end of last year was Taiwan's AU Optronics Corp., with 11 percent of the world market share, which - combined with Innolux's 23 percent - gives Taiwan more than 34 percent of global sales. ...The rapid expansion of the market for automobile accessories in China, in particular, has contributed to Innolux's increase in automobile screens." via MENAFN

Display bridge solution powers pico projector in mobile device ""One challenge of embedding pico projectors into smartphones is the lack of processor support for both a display and a pico projector," said Paul Karazuba, Quicklogic's senior product marketing and media manager. The QuickLogic ArcticLink III BX6 allows the single display interface signal from the device's applications processor to be duplicated and bridged so that it can drive both embedded display and the integrated pico projector." via NewElectronics

How can marine displays be improved? "Innovations in computer display technology would seem to have recently hit a plateau. With the advent of LCD panels, improvements in computer displays have recently been limited to larger screens, higher pixel resolution, greater energy efficiency, and lighter, more efficient use of base resources. Yet there remains two areas where computer display manufacturers can continue to offer improvements: the human-machine interface, and local display intelligence. To offer the most effective solutions, improvements should maximize their utility with improvements in performance for specific environmental conditions. There are several features a computing display can bring to embedded computing stations aboard ships, or ocean platforms; in particular, the two most glaring problems for users when out at sea are low-light environments, and the technical ignorance of the average user when faced with crashes or machine malfunctions. Advances in the display interface can lessen the effects of these problems and much improve the user experience. " via MarineLink

Pepsi Rivals Coke's Freestyle With Touchscreen 'Spire' Debut "Pepsi Spire lets users be their own mixologists to create up to 1,000 customized beverages. ...Pepsi Spire 1.1 is a countertop self-service unit that allows consumers to create up to 40 beverage combinations using a 10" touchscreen. The 2.0 model increases variety to 500 beverage combinations and features a 15" touchscreen, and is also available as a countertop crew-service unit for restaurant staff. Launching soon is Pepsi Spire 5.0, which will allow consumers to create more than 1,000 beverage combinations using a 32" touchscreen." via Vending Times

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

What are the limits of touchscreens and how can they be fixed? "Accurate typing isn’t the only problem with touch screens and their fleeting electronic pages. Many studies suggest that people’s memory and comprehension are often better when they read long passages on paper than on screen, said Mariette DiChristina, editor in chief of Scientific American, which in August held a conference on learning in the digital age. ...Another problem with touch screens’ transitory images is that they don’t help students create a mental map of what they’ve read and what’s to come — an overview that is known to be useful in memory. “You might remember that something you read yesterday in the paper was in the middle of the page, or in the right corner,” Dr. Wästlund said. “Even though you haven’t tried to memorize position, you have built this internal model” — like the page layout of a newspaper. That kind of cognitive map or physical landscape into which readers fit new knowledge is much harder to build with fleeting e-pages." via The New York Times

Is coding games for touchscreens difficult? "Often games designed around touch will have gestures. Slice through this, slide across this path, drag through the middle of that. Games designed around a mouse will have clicks and drags, where the endpoints are the critical factor. In most respects, it is just like dealing with a pattern of points. A mouse is more about the position at the moment of click, or the moment of release: "down" and "up" positions are important, but the middle is not. With touch devices, the location of "down" and "up" are less important, usually more important are the points in between. Since it often involves slightly more processing, matching the gesture and deciding if a gesture was close enough to a range rather than just testing the coordinates at a down/up/click event, it is consequently slightly more complex." via GameDev.net

Automotive Q&A about head-up displays "Q: How do you see the US market for HUDs shaping up in terms of OEM adoption? And do you see the HUD becoming more important as a route to prevent distracting the driver too much? A: Both the US and global HUD market are in the midst of tremendous growth. Over the past several years, there haven over 20 new adoptions of HUD, as well as several car manufacturers launching their first model equipped with HUD and all market indicators suggest that growth trend will continue going forward. HUD systems enhance the overall driving experience by allowing drivers to keep their eyes on the road while still viewing critical vehicle data, minimising driver distraction. With the increased adoption of active safety features such as blind spot detection and lane departure warnings along with navigation and smart phone integration, car manufacturers seek to find a way to deliver all of this information to the driver without "overloading" them with information and causing a distraction. HUD systems are emerging as an optimal method to help combat driver distraction." via just-auto

New research examines avionic display design and regulation "Synthetic vision, and its ability to enhance situational awareness will also be a focus for NASA, according to Ellis. "One of the primary things that we're focused on particularly (is) looking at the safety enhancements. One of them is looking at synthetic vision displays and developing minimum requirements specifically in regard to how they better improve situational awareness and their potential for preventing spatial disorientation and Loss of Energy State Awareness [LESA], so that would be something that provided directly to OEMs in terms of how they make their avionics and what's required by the FAA when they're doing so," said Stephens." via Aviation Today

Ingram Micro: 'It's time to take digital signage technology seriously' "Q: Is this an untapped opportunity for resellers? What are the benefits of embracing pro AV/digital signage sales? A: Without a doubt. If you look at the traditional IT resale market, we’re seeing constantly that the print and PC markets are in decline, and now everybody is moving into managed print services (MPS). The AV market is the total opposite. If you look at the professional audio/visual market and you look at the data Futuresource and others provide, it’s all growing. Retail digital signage is growing and corporate digital signage is growing. Our message to our partners is it’s time to take that technology seriously, because it is going to be the future of how everybody communicates, regardless of the size of their business. " via PCR

Has LCD Innovation Reached the End of the Line? "LCD owns the future by default. Still, cultural evolution gives rise to a desire for new means of interpersonal communication and information consumption. And some new products will require display characteristics that have not existed in the past, at least not at reasonable cost. An example: my new Samsung Galaxy S5 has a display that is truly sunlight readable. That is a characteristic most users would want in a cell phone, but it has taken years for the industry to supply it at a consumer-friendly cost. The GS5′s display is, of course, an AMOLED. Can LCD do what the GS5′s AMOLED is already doing?" via Display Central

What did you think about today's news? Leave a comment here and share your thoughts.

Tuesday
May062014

Display Technology News Roundup 5.6.2014

Image via Cypress Semiconductor / Electronics Weekly

What are the design considerations for large-area touchscreens? "As screen sizes increase, the main challenge for capacitive touch is maintaining the same performance users have come to expect from a mobile phone but over a larger screen. This means scanning more intersections, over more surface area, in the same amount of time. ...It is challenging for large screens to maintain fast refresh rates because the touch controller needs to sweep greater surface area, gather data from all intersections, and process that data." via Electronics Weekly

Why Are Mobile Display Revenues Overtaking TV Displays? "With larger display area and comparatively higher unit prices, LCD TV panels have generated a majority of FPD revenues since 2006, but over the past three years, the market for mobile devices has expanded. The recent trend toward higher resolutions, slimmer and more lightweight specifications, wider viewing angle, lower power consumption, and the emergence of LTPS and OLED displays are causing mobile display revenues to soar." via PCB007

Why Did Apple Just Buy A Tiny Display Company And What Could It Mean? "Apple used to push display technology with its products, most notably when it brought the Retina Display to the iPhone. But that hasn’t been the case lately, which makes its recent acquisition of tiny LuxVue Technology all the more interesting. But LuxVue’s technology has fascinating implications around low power and high brightness and could eventually mean Apple will manufacture its own displays for the first time. It could also allow the company to gain technological leadership again, as it has with its own in-house chipmaking, which was also made possible by an acquisition that didn’t seem especially all that important at the time. In a scoop over at TechCrunch, Apple responded with its typical non-comment about what it intends to do with LuxVue and to say the company is little known would be a case in understatement." via Forbes

How Can Quantum Dots (QDs) Increase Display Color and Brightness with Less Power? "The optical and electrical properties of the manufactured crystals can vary markedly according to their size and shape: The bigger the dot, the larger its bandgap and the longer the wavelength it emits. The smaller the dot, the smaller its bandgap – which means a shorter wavelength due to the quantum confinement of electrons and holes in these nanomaterials. Quantum dots offer marked advantages over fixed-spectrum conventional phosphor technologies because QDs are tunable, so they can be induced to emit at a very narrow wavelength. Improvements to the technology in recent years are also making them more attractive." via Photonics

Why is smartphone component production causing LCD display shortages and hurting the display industry? "In recent months, there has been growing demand for a number of high-value components for smartphones and tablets, including fingerprint sensors, CPUs, cameras and touch controllers, along with 4K television timing controllers. According to NPD DisplaySearch large-area displays analyst Peter Su, semiconductor manufacturers in Taiwan have increasingly been prioritising the manufacturing of these higher-value components over timing controllers [T-cons] for LCD displays. In a statement, Su warns the prioritising of higher margin components is leading to a shortage of T-cons." via Smart Company

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Sharp improves TN LCD panels with clever light scattering optical film "Adding a film to a TN panel isn’t a new concept, but Sharp’s film promises to do a much better job of improving angled viewing. Typically, existing films only improve viewing horizontally, not vertically. Sharp’s new optical film improves both by scattering light and being able to control which direction that light is scattered in." via Geek

How have avionic displays entered the future? "Analog gauges, often referred to as “steam gauges,” ruled the instrument panels of all aircraft for nearly 80 years. But with the advent of powerful and inexpensive semiconductors, and the clarity of liquid crystal diode displays, it became easier to combine many instruments onto space-efficient, yet easy to read, glass screens called multi-function displays (MFDs). Along with advancements of glass display screen came synthetic vision systems (SVS). Loosely defined as real-time, 3D color imagery, SVS makes paper navigation products nearly obsolete. Instead, it uses a preloaded, internal database to create a pilot’s-eye view of the terrain the aircraft is passing over at that time." via Aviation Today

What are the challenges of designing automotive heads-up displays? "HUDs work by projecting an image, usually from a liquid crystal display (LCD), onto the windshield or a piece of glass above the instrument cluster. ...Designing a good HUD presents many challenges. It needs to have a very wide contrast ratio. It must display an image bright enough to be clearly seen on a sunny day, but also dim the image so that it does not obscure the driver’s vision at night." via EDN

How did Apple and Samsung get into a smartphone war? "The first products known to have been the focus of one of Samsung’s major price-fixing conspiracies were cathode-ray tubes (C.R.T.’s), which were once the technological standard for televisions and computer monitors. According to investigators in the U.S. and Europe, the scheme was quite structured: competitors secretly got together in what they called “Glass Meetings” at hotels and resorts around the world—in South Korea, Taiwan, Singapore, Japan, and at least eight other countries. Some of the meetings involved the most senior executives, while others were for lower-level operational managers. The executives sometimes held what they called “Green Meetings,” characterized by rounds of golf, during which the co-conspirators agreed to raise prices and cut production to receive higher profits than would have been possible had they actually competed with one another. The scheme was eventually exposed, and over the course of 2011 and 2012, Samsung was fined $32 million in the U.S., $21.5 million in South Korea, and $197 million by the European Commission." via Vanity Fair

How to Install a Heads-Up Display in a Fifth Gen Camaro "There’s just something about checking your speed, gas gauge, and tachometer without having to look down that makes driving a new Camaro quite enjoyable and, once you’ve experienced that luxury, it’s quite difficult to go back. Unfortunately, not every fifth-gen Camaro shipped from the factory with a HUD and if you’re in the market for a used 2010, or you’re an original owner who didn’t have the option available at the time of purchase, you might think you are out of luck. But fear not fans of the futuristic windshield gauge concept, Heads Up can be yours and it can even be installed in your own driveway with a couple of factory parts and a weekend worth of work, if you’re willing to put in the effort. That said, we should mention up front that this can be quite a daunting task if you’re easily intimidated by making a mess in your new Camaro and it certainly isn’t a modification for the faint of heart. You’re going to have to dig in deep and, at some point, wonder if you’ve made a major mistake." via GM High-Tech Performance

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Will virtual reality (VR) make flat panel displays obsolete? ""A traditional display, especially larger ones, they're very expensive to manufacture and ship... it's literally just a lot of plastic and a lot of glass in a big box that has to be shipped across the world," Oculus VR founder Palmer Luckey continued. "Sometimes it breaks, then it has to sit on a giant store shelf until someone buys it. Once VR is commoditized, let's say 10 years from now, the tech from two years prior, you'll be able to buy a really good VR headset for $99, because there's not much material, once it's all commoditized..."" via Ars Technica

UK Developers Create Reach-Through Displays For Tabletops "Researchers from the University of Bristol have reportedly developed a new reach-through tabletop display with personal screens comprised of a curtain of mist, according to research scheduled to be presented later this month at an international conference on human-computer interaction. ...The device is known as MisTable and it is described as a tabletop system that combines a traditional interactive table with personal monitors built using fog between the user and the table’s surface." via redOrbit

New display brings the Internet to your wall "That's where Electric Objects, Jack Levine's new venture, comes in. He wants to take some of the more serene parts of the Internet out of that stress-inducing device sitting on your desk, and put them on your wall through a different kind of device. ...The product is still in the prototype phase. But the current unpriced model hacked together by Levine is bigger than an iPad and, at 23 inches, smaller than most TVs. A final, more polished version will include a screen designed to be on at all times, with sensors that detect if anyone is nearby, activating the screen. It will also have a tilt sensor to reorient itself in either landscape or portrait modes, and an ambient light sensor to keep the brightness low and subtle." via Fast Company

Why Some Doctors Like Google Glass So Much "At a recent event hosted by Google’s Cambridge branch, doctors from across the country came to show off how they’d thought of harnessing Glass for medicine. One presenter, Rafael Grossman, a surgeon based in Bangor, Maine, was the first person to use Glass during live surgery. He thinks the technique could help doctors teach new surgeons. But for the pilot at Beth Israel, video is off the table, at least for now. “We wanted to stay away from anything that could potentially be misconstrued as leaking patient information, so until we had a case study and a good foundation, we purposely stayed away from enabling the video feed,” says Horng." via MIT Technology Review

How tiny company Amorphyx is seeking to reshape the huge, mature business of manufacturing displays "Cowell and Amorphyx co-founder and chief executive John Brewer Jr. are preparing for a whirlwind, four-day trip to Taipei, Japan and South Korea, where they will meet with executives of major display manufacturing companies including Samsung and Sony. They hope to make progress toward an agreement to cooperate in testing and refining a process that would replace silicon-based transistors with amorphous metals-based resistors. Amorphyx has been doing this on a small scale in the lab, where it sprays two layers of metal compounds and an insulator onto wafers, then tests them for conductivity. Now it hopes to kick the process to a higher production volume. For the layperson, what this means is that displays built with Amorphyx's non-silicon process would consist of fewer layers than prevailing liquid-crystal manufacturing technologies, cost less and could be used on flexible surfaces." via Oregon Live

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

Shape-Shifting Touchscreen Buttons Head to Market "That technology was developed by startup Tactus Technology, which uses tiny fluid-filled channels and elastic blisters to make buttons rise up from a device’s screen and then disappear without trace when they’re no longer needed (see "Demo: A Shape-Shifting Smartphone Touch Screen"). Electronics manufacturing giant Wistron has now modified equipment at one of its factories in China to produce touch-screen panels with the shape-shifting technology inside. Wistron is one of the world’s largest electronics manufacturers; it’s made devices for brands including BlackBerry, Apple, and Acer. The company also recently became an investor in Tactus." via MIT Technology Review

A Joystick-Inspired Interface Could Solve Smartwatch Displays' Biggest Problem "Think of the way we used to use those small nubs located in the middle of an older laptop’s keyboard to move the cursor, and you’ll understand how this concept — created by Robert Xiao, Gierad Laput and Chris Harrison — works. Except that instead of a cursor, it’s navigating a mobile device’s UI that usually relies on taps and gestures. The problem is that your fingers are usually far too large to use all the same gestures you rely on with your smartphone on a watch’s tiny touchscreen. And you usually end up blocking the display in the process, making it even more difficult. So this concept reproduces most of that functionality with a watch display that can be subtly tilted side to side, up and down, rotated, and even pressed like a button." via Gizmodo

Should touchscreens be more intuitive? "Chris Harrison from CMU's Future Interfaces Group thinks modern, "flat" software doesn't profit from our dexterity with real-world tools like cameras, markers or erasers. To prove it, he created TouchTools, which lets you manipulate tools on the screen just as you would in real life. By touching the display with a grabbing motion, for example, a realistic-looking tape measure appears, and if you grab the "tape," you can unsheathe it like the real McCoy. " via engadget

Japan’s New Floating Touchscreen "The process is very fast paced, actually...allowing for highly responsive image manipulation. Hundreds of pictures are taken per second by stereo cameras. This allows the technology to precisely track a user’s hand and finger gestures as they relate to the floating images on the screen. These gestures are then translated into commands by computer software. Professor Ishikawa explains the advantage of gesture technology: “In hospitals and such during surgery, when one’s hands are dirty, it’s still possible to use this, or to use it in a variety of situations at a construction site.”" via Trefis

Atmel Announces Next-Gen Touchscreen Controllers "Atmel is well-known in the context of MCUs and FPGAs -- but it is also a major player with regard to touchscreen technology, especially in the large format screen space. ...The mXT1066T2 and mXT1068T2 controllers support both mutual-capacitance and self-capacitance sensing. By intelligently switching back and forth between the two and using a hybrid approach, designers can achieve optimal power consumption and noise immunity, even in high humidity and moisture environments, while supporting bare finger and gloved operation. Additionally, mXT1068T2 controllers supports hover operation in which the user's finger can be up to 20mm above the touch surface." via EE Times

Touchscreen Interface Based on Little Mobile Robots "Thumbles features tiny little omnidirectional robots that live on top of a projected screen. By grabbing them and dragging them around as they try to drive around, you can experience a completely new type of physical interactivity. What makes Thumbles unique is that the robots can move by themselves. They can provide force feedback, or dynamically form different kinds of physical controls, or act as virtual representations of things like molecules or mechanical structures. (Video)" via IEEE Spectrum

Could 'Star Wars' holographic displays become a reality? "HP Labs spinout Leia believes it is. Using a clever system of diffraction gratings, its small displays produce 64 different versions of each image, allowing a viewer to move around an object or person shown on the display as if it was right in the room with them. CEO David Fattal spoke to an eager crowd of imaging researchers at Stanford University about his company’s progress since it separated from HP. While the concepts behind Leia are the same as when the team’s work at HP was first published in Nature last year, the new company now has full color prototypes with improved resolution as it prepares for a product launch. Key to Leia’s technology is the use of fairly simple diffraction gratings at each pixel to redirect the backlight in different directions. " via ExtremeTech

What did you think about today's news? Leave a comment here and share your thoughts.

Wednesday
May012013

Display Technology News Roundup 4.30.2013

Image via ExtremeTech

An elastic touchscreen into which you can literally sink your fingers "The stretchable touchscreen, dubbed Obake, was created by Dhairya Dand and Rob Hemsley, both of MIT’s Media Lab. The touchscreen basically amounts to an interactive display on top of an elastic surface. When you poke or pull at the display, depth cameras measure your movements and tell linear actuators to manipulate the elastic surface accordingly. So, if you make a pinch-and-pull motion, the depth cameras will measure it, then the linear actuators will make elastic stretch and protrude in such a way as if you’re pulling it. The surface doesn’t just create little mountains of stretched elastic; it can also create resistance if you, for example, push inward rather than pull outward." via ExtremeTech

The American Display Company That Samsung Relies On For Success "When the S4 launches this month it will have a new generation of clarity in the display, one that iPhone lovers might envy. It will be thinner. And the battery life will be extended by about 20%, even with the high definition screen. It’s about to become a better phone. The reason for this is US technology. At least that is one important reason. Technology that gives the Galaxy S4 a better screen but also longer battery life and the thinner form factor. Samsung’s Galaxy S4 relies on materials and patents from New Jersey-based Universal Display Corporation. Without Universal there would be no efficient, thin, beautiful OLED display for the S4. But Universal’s relationship with Samsung goes back through the whole Galaxy line. And it stretches far into the future." via Forbes

High-tech specs: Electronic eyeglasses offer wearers more control ""It totally removes the corridor of traditional progressive lenses," he said. "So it makes your reading seem like you're reading through single vision lenses. [It's the] same with the computer use, so instead of relying on a little corridor and adjusting your head, you can use the whole lens to see distance, intermediate and up close, so it really enhances the comfort." ...He compared the technology of the touch sensor to that of a smart phone. The eyeglasses have "a microchip, composite lenses with a thin transparent LCD-like layer, miniature rechargeable batteries and a micro-machine accelerometer to detect tilt," according to a press release. "The microchip, micro-accelerometer and miniature batteries are hidden inside the [eyeglass frame]. The transparent liquid crystal layer in each lens is able to electronically activate the reading portion when the wearer needs it."" via The Altoona Mirror

World's first smartphone for the blind "The smartphone uses Shape Memory Alloy technology, based on the concept that metals remember their original shapes, i.e. expand and contract to its original shape after use. The phone's 'screen' has a grid of pins, which move up and down as per requirement. The grid has a Braille display, where pins come up to represent a character or letter. This screen will be capable of elevating and depressing the contents to form patterns in Braille." via The Times of India

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

This Bobbing Display Lets You Read While Running On A Treadmill "Instead of simply enlarging the text to make it easier to read or relying on oversized monitors, ReadingMate allows a treadmill user to read normal-size text on a small monitor mounted in front of the machine. The system relies on infrared lights embedded in special goggles that are tracked by an infrared camera positioned in front of the runner. As the user’s head moves vertically, the system moves the text accordingly. ...In addition to letting treadmill users catch up on some reading while burning some calories, the researchers say ReadingMate could also find aviation, construction and transportation applications. Not to allow drivers and pilots to enjoy a good book while on the job, but to stabilize information displayed on screen while experiencing heavy shaking or turbulence." via Gizmag

A Simple Way to Turn Any LCD into a Touch Screen "A group of researchers from the University of Washington’s Ubiquitous Computing Lab developed a method called uTouch that uses a simple sensor and software to turn an ordinary LCD into a touch screen display. The system takes advantage of the low levels of electromagnetic interference produced by many consumer electronics, harnessing it to do things like control video playback with pokes and motions on an otherwise noninteractive screen. “All these devices around you have all these signals coming out of them, and we ignore them because we think they’re noise,” says Sidhant Gupta, a PhD candidate at the University of Washington’s Ubiquitous Computing Lab and one of the co-authors of the paper." via MIT Technology Review

Are touchscreens right for all equipment? "“With touch, you lose tactile feedback. With traditional controls a person using the instrument can continue to use the equipment without having to stare at it,” says Siegel. This is true of much research equipment, which requires simultaneous fine-tuning of several pieces of equipment at once. Sometimes functions available in one section of an application on a touchscreen are difficult to access from another section. This could be one reason TI has not seen a widespread adoption of touchscreen technology in the scientific research space. Siegel speculates that the consumer market usually sets the trend, and popular capacitive touchscreens are general overkill for research instruments." via R&D Magazine

U.S. Seeks Voluntary Limits On Car Touchscreens "The new guidelines limit simple tasks to two seconds. They also restrict the time allowed for complex tasks to 12 seconds, but do not limit the number of times a driver can touch a screen. The decision on whether a screen would freeze or shut down after 12 seconds would be left to automakers based on their own research, NHTSA said. The auto industry’s current guidelines, which are a decade old, allow drivers to read text and perform other more complex tasks while cars are moving at less than 5 mph, Strickland said. Systems now are designed so multiple-step tasks take 10 or fewer screen touches for a total of 20 seconds with a driver’s eyes off the road. But the devices won’t turn off or stop a driver from doing something that takes longer than 20 seconds." via CBS DFW

Prototype could revive glasses-free 3D displays "Dolby says they have now developed a system that encodes a 3D image stream and can decode it in real time to produce 3D without the need for glasses on "any 3D TV, tablet, laptop or smartphone" with sufficient resolution. The design requires adding a sheet of plastic with undulations that deflect light at 26 different angles simultaneously, offering effective 3D views from a wide range of angles. Because resolution is lost as an image is split and sent in different directions, the underlying display must be four times the resolution of HD television. Such displays are expensive, but they are becoming available, so 3D may yet have a future." via New Scientist

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Why Don't We Have Holodecks? "Researchers at the University of Illinois at Chicago recently created Cave2, the highest-resolution immersive panel display in existence. The cave is made up of 72 3D LCD panels arranged in a 320-degree shape. A special pair of glasses with tracking dots on them helps the computer know in which direction you're looking so it can adjust the images to fit your perspective. You can also use a wand, covered with sensors, to interact with the 3D objects around you. For now, the system is used for high-resolution medical-image viewing. It's cool but probably won't be in your living room anytime soon. What about recreational holodecks? Nathan Burba, director of Project Holodeck (which is exactly what it sounds like), told PM that cost has been a big issue until recently. "I would say that the technology has obviously been limited," he says. "The display technology has been locked away in military research, and there's a lack of innovation there because of the stringent requirements put on researchers."via Popular Mechanics

Google Glass is finally here: Tech specs released, first units shipped "According to the spec sheet, Google Glass will offer one full day of battery life for normal usage, but features like Hangouts and video recording will expend the battery faster. Google recommends recharging the kit with with the Micro USB cable and charger it supplies with Glass. The display resolution is the "equivalent of a 25-inch high definition screen from eight feet away", but Google is being no more specific than that. " via ZDNet

LG Rolling Out Curved OLED TVs in South Korean Market "Why curved? The idea is to offer to an IMAX-like experience in the home. A curved display also eliminates the problem of screen-edge visual distortion and loss of detail since the entire surface is equidistant from the viewer's eyes, LG says. The curved TV itself is just 4.3 millimeters (0.17 inches) thin and weighs 37.48 pounds. It uses proprietary WRGB technology and a four-color pixel system that features a white-sub pixel in addition to red, blue, and green." via HotHardware

Japan Display turns to smaller smartphone makers "Japan Display, the world's No.1 maker of small to mid-size panels, may increase sales to as much as 800 billion yen ($8.10 billion) for the fiscal year ending March 2014 from slightly below 500 billion yen a year earlier, said Shuichi Otsuka, CEO of the unlisted firm. The company, formed out of a merger of the small panel divisions of Sony Corp, Hitachi Ltd and Toshiba Corp last April, does not publicly identify its clients but is widely known as a key Apple supplier. Apple undershot Wall Street's sales forecast for the third straight quarter in the three months ended December after iPhone sales missed expectations." via Yahoo! News

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

Future of Computer Human Interaction on display at Paris conference "The future of computing comes to Paris this week with the annual Computer Human Interaction (CHI) conference, which showcases new approaches to the way users connect with electronics. ...One of the big draws at the conference is the “interactivity” section, which is like a mini trade show of futuristic prototypes that attendees can try out for themselves. Gone are the days of just keyboards and mice. “We’re seeing things that go much further into the future,” Baudisch said." via PCWorld

How today’s touchscreen tech put the world at our fingertips "Because it's so different from mouse-and-keyboard-driven and stylus-driven software, touch-driven software has also transformed the hardware it runs on. Most smartphones include just a few physical buttons: power, volume, a mute switch, and the home button. Using a touchscreen as the primary input obviated the need for things like a hardware number pad or keyboard, since the screen could dynamically become whatever it needed to be. Software keyboards have become even more context-sensitive over time, adding things like a ".com" button when typing in a URL field." via Ars Technica

Aggressively combat noise in capacitive touch applications "Today, thin is in. The push to make aggressively thin form factors for touchscreen devices, especially mobile phones, creates a two-fold problem: more noise coupled into the sensor from the display and a higher parasitic capacitance of the sensor. Displays generate noise that is much lower amplitude when compared with charger noise, but they can have a huge impact on touch performance due to their close proximity to the touch sensor. While AMOLED displays are very quiet (but more expensive than LCDs), the majority of the market today is still the noisier ACVCOM and DCVCOM-type LCD displays. It is the VCOM layer, the common electrode, of these displays that is the source of their noise." via EDN

Fujitsu Laboratories New Touch-based Interface Marries Analog & Digital "Transform boring, poorly stapled business plans, press releases, marketing materials and other old fashioned paper artifacts to life using Fujitsu Laboratories’ touchscreen interface that can animate and bring a whole new dimension to real world objects. ...This amazing touchscreen interface is also non-biased and can adjust color and brightness, and skin color accordingly so that it isn’t influenced by external or environment circumstances. In addition, if you don’t want to operate the device by touch alone, you can also manipulate the sensors with gesture controls — you can explore three dimensional objects with the simple movement of your fist to get a full 360-degree view." via Gadizmo

Samsung Demos a Tablet Controlled by Your Brain "The concept of a dry EEG is not new, and it can carry the drawback of lower signal quality, but Jafari says his group is improving the system’s processing of brain signals. Ultimately, if reliable EEG contacts were convenient to use and slimmed down, a brain-controlled device could look like “a cap that people wear all day long,” says Jafari." via MIT Technology Review

Advances in capacitive touchscreen for mobiles "First, it is critical for designers to understand the underlying construction of a touchscreen system to be able to understand how technology changes are remaking this segment. The key components in a touch system include the coverlens, sensor, LCD, and PCB. The coverlens is the outward facing component of the product. This is where the consumer interacts with the screen. In some products, this coverlens could simply be a protective cover to prevent scratching and damage, or it can actually be part of the touch sensing system itself." via EET Asia

'Interactive Fish Tank' turns water into a capacitive touchscreen "Once it makes contact with the surface, Donoso explains, a finger "acts in the same way as touching a button on an iPhone or any other touch screen." Indeed, in substituting glass for water, Donoso and Moore present a different, and perhaps more accessible way to understand how capacitive touch works on traditional displays. The underlying principle is the same: a user's touch elicits some change in the surface at the point of contact, and the software reacts accordingly. Whereas smartphone displays gauge this change in terms of electric charge, "Fish Tank" measures it in ripples." via The Verge

Discomfort and fatigue from stereo 3D displays "In stereoscopic displays, images have varying binocular disparity thereby stimulating changes in vergence as happens in natural viewing. But the accommodative distance remains fixed at the display distance, so the natural correlation between vergence and accommodative distance is disrupted, leading to the so-called vergence–accommodation conflict. The conflict causes several problems. First, differing disparity and focus information cause perceptual distortions. Second, viewers experience difficulties in simultaneously fusing and focusing a stimulus. Finally, attempting to adjust vergence and accommodation separately causes visual discomfort and fatigue in viewers." via SPIE

Shapeshifters: phones of the future could morph on demand "The six working prototypes, known as "Morphees," are thin, electronic displays capable of automatically changing shape to perform certain functions. Researchers say that if brought to market, the devices could usher in a new era in mobile computing, breaking down the physical barriers that have traditionally defined smartphones, tablets, and gaming consoles." via The Verge

What did you think about today's news? Leave a comment here and share your thoughts.

Sunday
Apr142013

Display Technology News Roundup 4.15.2013

Image via Tony Law for Bloomberg Businessweek

How Samsung Became the World's No. 1 Smartphone Maker "Lee Keon Hyok predicts that smartphones will indeed become commoditized, just as PCs did in the 1990s. “But you have to remember, we make a lot of parts,” he says. “The shape may change, but phones are still going to require AMOLED displays, memory, and processors. We are well prepared to meet those changes.” AMOLED refers to active-matrix organic light-emitting diodes. It’s the state of the art and possibly the only display technology that has its own K-pop song: Amoled, a catchy 2009 number by Son Dam-bi and After School. When the mobile business ceases to be profitable, Samsung will have to force its way into some other industry that requires a lot of upfront capital and expertise in mass-manufacturing. The company announced in late 2011 that it would spend $20 billion by 2020 to develop proficiencies in medical devices, solar panels, LED lighting, biotech, and batteries for electric cars. And if Samsung batteries or MRI machines don’t take over the market, maybe the chairman will set a huge pile of them on fire. “The chairman is saying all the time, ‘This is perpetual crisis,’ ” says mobile marketing chief DJ Lee. “We are in danger. We are in jeopardy.”" via Bloomberg Businessweek

Next-Gen iPad To Be Lighter, Thinner Thanks To New Display "“It’s likely that part of the thinner/lighter design will be reducing the size of the LED backlight, partly by making the display more efficient and partly by using more efficient LEDs,” NPD DisplaySearch analyst Paul Semenza told CNET in a recent note. ”The other significant change that we feel is likely is a shift to a film-based touch sensor.” ...Apple may unveil its next-generation iPad during a special press conference later this month, though a recent rumor suggested that the new tablet won’t launch until fall 2013." via BGR

Nvidia shows off stunning graphics with Kepler Mobile chip "Nvidia chief executive Jen-Hsun Huang showed off the company’s next-generation mobile chip, dubbed Kepler Mobile. Speaking today at the company’s investor day, Huang said that Nvidia made a huge investment in transforming its high-end Kepler family of PC desktop graphics chips so they can run on mobile devices. ...The new chip will be able to play high-end PC games such as Battlefield 3, pictured in the video below. That means that Kepler Mobile could enable mobile devices — smartphones and tablets — to run DirectX 11 graphics, with high-end features such as advanced shadows and lighting. To date, this hasn’t been possible — by a long shot — on mobile devices." via VentureBeat

What’s New in Multi Touch Technology? "By offering a more complete picture of how modern multi-touch technology is impacting business, the more we can better understand the environmental, ergonomic, economic and workflow enhancements that are resulting from innovations of this technology. This paper focuses specifically on new and existing users of equipment in the fields of building automation and HVAC, medical & healthcare, interactive and self-service kiosks. Moreover, it evaluates the most current technologies, features and benefits of multi-touch technology." via AIS

Pixelligent Technologies launches PixClear Zirconia nanocrystals for increased light output in touchscreens "When incorporated into existing products, the nanoadditives can dramatically increase light output and readability of modern touch screens and displays. PixClear, Pixelligent officials say, also increases the light output of products for lighting applications such as HB-LEDs and OLEDs. Prior to Pixelligent, nanocrystal dispersions suffered from aggregation and were cloudy, difficult to process, and unstable, which prevented their commercial adoption. But Pixelligent officials claim their PixClear dispersions are something new: they're perfectly clear. These clear dispersions allow Pixelligent to deliver precise control over the target applications’ optical, chemical and mechanical properties." via Solid State Technology

Planar Releases 3D BIM Models of LCD Displays and Video Walls through Autodesk Seek "Digital display company Planar Systems Inc. has announced that 3D Building Information Modeling (BIM) models of select Planar large format LCD displays and video walls are now available free through the Autodesk Seek web service. Autodesk Seek allows architects, engineers and designers to easily find, preview and download 3D models of Planar displays. They can then incorporate these models into their building plans without having to create the models themselves." via Digital Signage Connection

Touchscreen Gestures Reimagined as Sculptures "In an era when kids become intimately familiar with tablet and smartphone devices at a young age, designer Gabriele Meldaikyte captured today's touchscreen gestures in analog form. As shown in the video above, Meldaikyte's mixed-media exhibit reimagines the language of smartphone communication as sculptures; there's pinching, tapping, scrolling, flicking and swiping. ...Although touchscreen gestures are common today, there could be a shift towards more intuitive ways of control such as voice command (e.g. Google's Project Glass)." via Mashable

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Convergent screens, content and data creating 'One Screen' to rule them all "Today the consumer disposition changes based on two things: where they are and what they are doing. For instance, a personal screen (tablet, mobile) or the screen on the wall becomes a point of wait whenever the consumer has "Dwell Time." They could be in line getting coffee or at a doctor's office. When the consumer is driving down the road, or at a train station or airport, the consumer is "On the Go," and their screen or the screen in the venue or on the roadside becomes a point-of-transit screen, where the messages are brief and about the brand. And when the consumer is either in a retail environment or just sees something they want to buy, the screen then becomes a point of sale, where the consumer is now a "Shopper."" via Digital Signage Today

China panel makers continue to improve their panel technology "China-based panel makers BOE, Tianma Micro-electronics and China Star Optoelectronics Technology (CSOT) are showing increasing signs of improved technology and are likely to start producing more high-end panel products in 2013. The panel makers currently use a-Si TFT technology to produce Ultra HD (3840 by 2160) TV panels but are looking into using IGZO technology in 2013 instead. The makers are also aiming to release 400ppi smartphone panels during the year." via DigiTimes

Computing Pioneer Alan Kay Talks About The Past, Present, and Future of User Interfaces "Part of the motivation for the PARC GUI came from our desire to have a universal display screen which could display anything — this led to the bitmap screen. One drawback of these screens and the screens today is that the visual angle of the display (about 40°) is much narrower than the human visual field (which is about 135° vertically and 160° horizontally for each eye). This is critical because most of the acuity of an eye is in the fovea (~1-2°) but the rest of the retina has some acuity and is very responsive to changes (which cause the eye to swing to bring the fovea on the change). Head mounted displays can have extremely wide fields of view, and when these appear (they will resemble lightweight glasses), they will allow a rather different notion of UI — note that huge fields of view through glasses will help both 2-1/2 D and 3D graphics, and the UIs that go along with them. This suggests many new design ideas for future GUIs, and they will slowly happen." via Time

Novel Plastic Film Displays Glasses-Free 3-D Images For Mobile "The film is basically a lenticular lens, which is a series of tiny lens elements that direct light to each eye. The nanoimprinting technology developed at IMRE makes it possible to create this type of lens on a plastic film. “The filter is essentially a piece of plastic film with about half a million perfectly shaped lenses engineered onto its surface using IMRE’s proprietary nanoimprinting technology,” said Jaslyn Law, the IMRE scientist who worked with TP on the nanoimprinting R&D since 2010, in a press release." via IEEE Spectrum

Quantum Dots in LCD Before OLED "As you read this, retailers are putting Sony model W009A BRAVIA TV sets on shelves around the USA. We’ll be seeing quantum dots in LCD before OLED for sure. It didn’t look that way a few years back, so I thought it would be interesting to bring us all up-to-date on the industrial and commercial development of quantum dot (QD) technology for display applications. ...Given the extent of industrial development, I expect to see more results soon. OLED TV has not progressed as fast as hoped and LCD makers need extra features to justify UHD prices. This looks like the right time for LCD color gamut to become a key product feature and reason for consumer upgrades." via Display Central

Interactive Holographic Video Display "Holoxica announces an Interactive Holographic 3D Display, which is a second generation prototype. The design is inspired by Head-Up Displays (HUDs), based on free-space optics with images floating in mid-air that can change in real-time. ...The interactive holographic display system comprises a Holographic Optical Element (HOE) lens, a digital controller, a motion sensor and a projection subsystem (a laser projector) imaging a diffusion screen. The HOE is about the size of a page (20x30cm) and the images are formed in real space (in mid-air) about 20cm from the hologram plane. The image are about the size of a hand (up to 7x7cm). The images can be refreshed at video rates and arbitrary images can be displayed. However, the images are formed in three distinct planes, corresponding to the colours of the lasers in the laser projector i.e. red, green and blue. ...Immediate applications of this technology include HUD-style displays and novel user-interfaces with the added dimensions of real-space interactivity. " via Holoaxica

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

An introduction to CPI's OLED prototype line facility "The Centre for Process Innovation (CPI) is a UK based R&D institute that helps companies develop and scale manufacturing processes. The CPI sent us the following video and update on its OLED/OPV prototype line (built by MBraun) that was designed to enable materials companies, device designers and end users to develop their technology within a fully automated, controlled environment. CPI's system supports both small evaporized and soluble OLED materials." via OLED-Info

LCD VS Plasma TVs "For those of you who care to understand the science behind [Plasma TVs], here’s how the magic happens: An electrode applies an electrical current to a small cell filled with a noble gas mixture (usually neon and xenon). This excites the gas, ionizing it and transforming it into a plasma. This plasma emits ultraviolet light – which we can’t see – but when the UV light hits a phosphor coating that lines each cell, it causes the phosphor to glow and put out light that we can see. Depending on which particular phosphor the cell is coated with, it will create a red, green, or blue glow. Just like with LCD displays, each cluster of red green and blue subpixels makes up one pixel on the screen (see header image)." via Digital Trends

QD Vision secures $20m to ramp production of components for LCD applications "According to the company, Color IQ significantly improves LCD color performance. Until now, most mainstream LCD TV designs have had to sacrifice color quality, typically only delivering 60-70 percent of the NTSC color standard. Color IQ increases typical LCD color performance by up to 50 percent and is capable of delivering 100 percent of the NTSC standard, QD Vision said." via Boston.com

George Gray, the man who made flat screens possible "Gray didn't invent liquid crystals. In fact, they are quite common; every cell in our body is surrounded by a liquid crystalline membrane. Nor did he demonstrate that liquid crystals have the flippable characteristic that makes them suitable for displays. Gray's breakthrough was to develop molecules that are flippable at room temperatures. But just like so many great innovations the road to development was far from easy largely because there was little appetite for funding research on molecules that, at the time, had no clear applications. Turning liquid crystals from curiosities into the ubiquitous technologies that they are today required both a burning need for new displays and the foresight of one of the more colourful government ministers." via The Guardian

Apple job listing confirms Apple is investigating using flexible displays in future products "Flexible display rumors have picked up steam even more since rumors of an iWatch from Apple, and just today we came across two new Apple patent applications detailing flexible devices that could change states as a user bends or twists the device. We all know Apple patent applications have never been a good indication of future product releases, but now Apple has came right out and stated in a job listing that it is indeed considering flexible displays. "Apple Inc. is looking for a Display Specialist to lead the investigation on emerging display technologies such as high optical efficiency LCD, AMOLED and flexible display to improve overall display optical performance."" via 9to5Mac

OLEDs and the beginning of the end for LCDs "In 2012 Samsung Electronics moved their LCD business units into a separate entity. One report suggests that the Taiwanese have invested $60 Billion in the LCD industry and seen a return of just $40 Billion. Some Japanese makers, despite having superb technology, have seen recent losses in some cases equal cumulative profits of the preceeding 5 to 10 years. Restructuring is therefore afoot. In the last few weeks Samsung purchased a 3% stake in Sharp. Japan Display Inc (JDI), puts together small and mid sized LCD panel manufacture units from Sony, Hitachi and Toshiba, focusing on automotive, cellphone and digital camera displays (not TV). Meanwhile, the Chinese are quickly moving into LCD panel production. For many years the top five in the LCD business, in order, were Samsung, LG Display, Innolux, AUO and Sharp. Now, as evidence of China's progress, in late 2012 Chinese BOE is number 5 for notebooks and monitors and China Star (CSOT) number five for TVs." via Printed Electronics World

Epson Concedes It Showed Reflective-LCD Projector Too Soon "The reflective LCD technology differed from conventional high-temperature polysilicon (HTPS) in that the polarized light rays don't pass through the panel but rather are reflected back at a different angle than they came in on. But the reflective technology also required a more complex polarized beam splitter to combine red, green and blue images and took semiconductor controllers out of the optical path and put them behind individual pixels." via Consumer Electronics Daily

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

Multi-focal AR contact lenses work for both near and far "The idea behind the iOptik, is that the contact focuses foreground light, like that from a nearby monitor, onto the center of the pupil. The background light is focused on the surrounding (annular) regions of the pupil. This resembles currently prescribed multi-focal contact lenses, which seem to work quite well — only these guys are just a little more extreme in the separation of the two fields. As shown in the video above, the image is projected directly onto display components that are integral to a pair of special glasses. Superimposing full-field 3D virtual images, which would be particularly enticing for the gaming world, would be seamless with such a device. Interaction with avatars would take place in the whole user space rather than just on a limited screen." via ExtremeTech

Japan Display has begun to see profits "Japan Display is a joint venture of Japan-based firms such as Sony, Toshiba and Hitachi with 70% of shares owned by government-affiliated institutes. Sony, Toshiba, and Hitachi each owns 10% of shares. Japan Display was established on April 1, 2012 with capital of JPY230 billion (US$2.3 billion) and currently employs around 6,200 staff. Otsuka noted that Japan Display focuses on LTPS-CMOS technology and expects panel capacity to increase to six million units in 2014 due to minimizing non-silicon based technology capacity and focus on expanding LTPS capacity." via DigiTimes

Displays defy distraction at New York Auto Show "At BMW, where analog instrument clusters are part of the classic BMW look, many of the high-tech electronic displays in 2014 models mimic analog dials. Even the BMW Concept Active Tourer premium compact car displayed at the show has a rounded albeit digital electronic instrument cluster. Here again the large display in the futuristic infotainment console isn’t a touchscreen. The only touchscreens are the two removable iPad-like displays facing the rear passenger seats, which also have access to handy fold-down trays." via TechHive

Smell-o-vision screens let you really smell the coffee "The "smelling screen", invented by Haruka Matsukura at Tokyo University of Agriculture and Technology in Japan and colleagues, makes smells appear to come from the exact spot on any LCD screen that is displaying the image of a cup of coffee, for example. It works by continuously feeding odours from vaporising gel pellets into four air streams, one in each corner of the screen. These air streams are blown out parallel to the screen's surface by fans, and varying the strength and direction of them manoeuvres the scent to any given spot on the screen." via NewScientist

Bendable screens still need a breakthrough ""There are barrier films in all sorts of products, for example food packaging, but the challenge is that OLED is one of the most sensitive materials we follow, and so creates huge challenges," says Lux Research's Melnick. Singapore-based Tera-Barrier Films, for example, has developed a way to plug leaks in the layers using nanoparticles. Director Senthil Ramadas says that after years of delays the company last month started production in Japan and aims for mass production by end-2014. "You have several challenges in the value chain," he said. "All these things need to be established, and only now is it coming out." And there's another problem: all the materials in a bendable display need to be bendable, too — including the transparent conductors that drive current through the display. Several technologies are vying to replace the brittle and expensive Indium Tin Oxide (ITO) used in most fixed displays, including nanowires, carbon nanotubes, graphene and conductive mesh." via NBCNews

Is Samsung safe from the threat of Korean war? "Samsung's primary hedge against the threat of war remains its massive geographic diversification of manufacturing assets, experts note. While Crystal Valley, a two million sq ft complex built on a former vineyard that employs about 20,000 workers, is an important cog in the Samsung machine, particularly in LCD display manufacturing, it's just a small part of the company's global capabilities. The company boasts five other plants worldwide that could pick of the display manufacturing slack in the event of a global shutdown."via Channelweb

Three-dimensional displays, past and present "The ultimate goal of display technology is to show a dynamic three-dimensional image that appears to float without a frame, much as Princess Leia did when projected from R2-D2 in the 1977 movie Star Wars. The history of 3D displays begins in a much earlier time—long before the advent of movies, holography, or electronics. It goes back to 1838 when Charles Wheatstone at King’s College London proposed the concept of the stereoscope, which works based on binocular disparity: Because our two eyes, physically separated by about six and a half centimeters, observe different perspectives of an object, the illusion of depth can be created from two 2D images whose features are slightly offset from each other. The brain merges those two images into a single 3D perspective." via Physics Today

Laser Fusion’s Brightest Hope "Here at the Lawrence Livermore National Laboratory, a U.S. national security laboratory tucked amid vineyards and undulating grassy hills about an hour east of San Francisco, the lasers of the National Ignition Facility (NIF) have already created the intense pressures and temperatures needed to get atoms of hydrogen to fuse. But NIF is trying to achieve a far more challenging goal, one that countless researchers have sought for decades. NIF’s aim is not just fusion but fusion’s equivalent of a chain reaction, a self-sustaining “burn” capable of producing more energy than is needed to get the process started in the first place. ...The laboratory has also built a small industry around damage mitigation. After a laser shot, engineers can use a telescope in the target chamber to look back through every line of optics for damage; each defect gets a number. They then use blue LEDs to program liquid-crystal-based screens through which beams pass before amplification. These screens can be made to have any arbitrary pattern of transparent and opaque areas, creating dark spots in a beam in order to circumvent damaged areas down the line. When too many defects accumulate, the engineers remove the damaged component and send it to another building, where the surface is re-treated and carbon dioxide lasers are used to etch out damage, leaving behind optically neutral conical pits. Nowadays, up to 40 pieces of optics, mostly the target-chamber focus lenses and debris shields—protective screens between the target chamber and the rest of the optical line—are pulled and sent away to be refurbished each week." via IEEE Spectrum

What did you think about today's news? Leave a comment here and share your thoughts.

Sunday
Feb242013

Display Technology News Roundup 2.24.2013

Image via Electronics News

HMI trends in industrial touch screens "Glass touch displays are also setting a new design trend which optically excels with its smooth and seamless glass surfaces. At the same time though this is where the challenge begins: Where robust designs are concerned, the glass panel cannot just be stuck on the back with an assembly kit, like, for example, is the case with ceramic cooking areas, in order to create a shock- and vibration-proof hold. Especially not when the opening of the housing on the machine or equipment has to offer comprehensive protection against dust and spray water." via Electronics News

Apple patent filing points directly to 'iWatch' concept with flexible touchscreen display "In another embodiment, the invention calls for a more robust design in which the flexible display is mounted directly to the bracelet and "framed" by a thicker, more comfortable fabric covering. Switches and critical electronics should also be resistant to fatigue, the patent notes, as the bracelet switches from a convex shape to a concave configuration depending on whether it is being worn by the user. When in its "curled state," or otherwise attached to a user's arm, the bracelet can take on the form of an uninterrupted screen. On-board sensors, like gyroscopes and accelerometers, would aid in orienting the screen's information toward the user." via Apple Insider

Polytron Unveils Transparent Smartphone Display Prototype "Taiwan-based Polytron Technologies are apparently already experimenting with a glass like smartphone with a multi-touch display.The prtotype device called Switchable glass is a conductive OLED display (organic light-emitting diode) makes use of liquid crystal molecules, that emit light in response to electric current. When the device is switched off the molecules take the form of a white cloudy like substance, which transforms the device to appear like glass." via Gizbot

Apple CEO blasts OLEDs as inferior tech – independent research shows he has a point "At a Goldman Sachs investor conference today, the Apple CEO dismissed the idea that the display technology is something Apple should adopt, noting “If you ever buy anything online and really want to know what he color is, as many people do, you should really think twice before you depend on the color from a OLED display.” Cook, asked if Apple would consider creating devices with larger displays, said that size and specifications are things companies focus on when they can’t “create an amazing experience.” That’s obviously a shot across Samsung’s bow, but it’s an arguably true evaluation of both the PC business and smartphone manufacturing." via ExtremeTech

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Touch panel market projected for 34% growth in 2013 "The financial crisis that started in 2008 left much of the IT industry hobbling worldwide. But only the touch panel market is enjoying a boom. Many new players are pouring into the industry, and those on the sidelines are waiting for the opportune moment to enter. As more players enter the competitive landscape, touch panel prices are falling rapidly. In addition, to gain competitiveness and to differentiate itself in the market has led players to develop and improve structure, technique and process, and seek out new materials." via Solid State Technology

LG Display betting on OLED to the tune of $657 million "Today we learned that LG Display has invested a whopping $657 million in the production of large OLED TV screens, a figure that will enable it to produce 26,000 mother glass sheets a month which are big enough to make six 55-inch screens per sheet. In other words: the company will be capable of churning out 156,000 panels per page turn on your calender. Since LG display is the largest flat-panel producer in the world, and since LG Electronics owns a 38 percent stake in it – it stands to reason that LG proper will be buying plenty of the new panels. This is news that should resonate industry-wide." via Digital Trends

Panasonic Says Plasma is still the best TV technology "Unlike LCD TVs which use an array of LEDs to illuminate their pixels, plasma TVs use glass panels containing over two million tiny cells filled with a mixture of inert gases. An electric current passed through these cells excites the gases, causing them to illuminate the pixels across the screen. This method of lighting is traditionally a lot better for motion reproduction, contrast levels and reducing 3D crosstalk than LCD tech. But they do suffer from a lack of brightness and come with bulkier chassis than their LED cousins." via TechRadar

ISSCC 2013: Imagers, MEMS, Medical and Displays "Significant R&D effort is being spent on active 3D imaging time-of-flight (TOF) applications to support requirements from autonomous driving, gaming, and industrial applications, addressing open challenges like background light immunity, higher spatial resolution, and longer distance range. Deep-submicron CMOS single-photon avalanche diodes (SPADs) have been developed by several groups using different technology nodes. They are now capable of meeting the requirements for high resolution, high timing accuracy by employing highly parallel time-to-digital-converters (TDCs) and small pixel pitch with better fill factor. ...This and other related topics will be discussed at length at ISSCC 2013, the foremost global forum for new developments in the integrated-circuit industry. ISSCC, the International Solid-State Circuits Conference, will be held on February 17-21, 2013, at the San Francisco Marriott Marquis Hotel." via Solid State Technology

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Three-dimensional dancing bear shows the way to practical holographic display "Three-dimensional holographic displays can provide truly realistic images because they provide all the depth cues required by the human visual system and eliminate visual discomfort. However, the development of a practical holographic display system is limited by the availability of a spatial light modulator (SLM) with a large pixel count and closely spaced pixel element (small pixel pitch). Such a SLM is critical to achieve a large displayed image and a wide viewing angle.1 Over the past five years, we have developed three holographic display systems to combat this problem, each with an increasing degree of sophistication, resolution, and color reproduction quality." via SPIE

Improved Moisture Barriers for Organic Displays and Electronics are Coming "Materials used in OLED or OPV devices degrade rapidly when they contact oxygen or moisture, so they must be sealed tightly. In contrast, inorganic devices such as conventional TFT LCD or TFT-EPD survive the presence of humid air about a thousand times longer. In fact, EPD, such as electrophoretic E Ink displays, need some moisture so its encapsulation is meant to keep water in, rather than out." via Display Central

Key patent analysis on quantum dot displays released "The quantum dot recently emerged as a next-generation display material. Quantum dots, whose diameter is just a few nanometers, are semiconductor crystals. The smaller its particle is, the more short-wavelength light are emitted; the larger its particle is, the more long-wavelength lights get emitted. Considering that there are more advantages with the quantum dots over conventional light sources, it is not surprising that the quantum dot display gains a lot of attention." via Solid State Technology

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

Sharp develops technology to recycle glass from LCD TVs "Sharp Corp has developed technology for reprocessing the glass from used LCD panels, a discovery seen helping to lower recycling costs for consumers. ...Working with Osaka Prefecture University, Sharp found a method for turning the crushed glass from panels into zeolite via reactions in an alkaline solution. The firm foresees stable demand for the material, which is used as an absorbent to purify water and as a soil treatment, among other purposes. A 40-inch panel would yield roughly 200 yen (US$2.35) worth of zeolite." via Waste Management World

As touch screen market grows, Asia gains advantage on industry ""Demand is growing for thinner, light weight, and lower cost touch panels and devices. In addition, we see strong touch screen growth over the next several years in larger display applications such as convertible/hybrid notebook PCs and all-in-one PCs,” saidJennifer Colegrove, Vice President of Emerging Display Technologies at NPD DisplaySearch. “Over the next few years, in-cell, on-cell, and sensor-on-cover touch technologies will surpass the add-on type projected capacitive touch.” To meet consumer demand, technology companies are adapting to the market simply by adding touch screen abilities. Google, for instance, was rumored to be installing a touch screen in its next Chromebook. Although the conjecture came from a “leaked” video last week, it is inevitable that more laptops will feature touch screen technology." via Digital Journal

Apple's iPhone 5 Integrated Touch Display Technology Comes to Light and it loudly Screams it's Coming to all Macs Eventually "Specifically, rather than employ a separate, overlaid touch sensor panel over an LCD panel, embodiments of the present disclosure may incorporate integrated touch sensor components in-cell within display pixel cells of the LCD or on-cell above the display pixel cells. Among other things, these touch sensor components may include a conductive portion of in-cell black matrix, which also may shield light from one pixel from bleeding into another pixel." via Patently Apple

What do TV screens, bullet-proof vests and soap all have common? "Nematics were discovered in Germany in the late 19th century by virtue of their appearance under polarised light (as shown in the image), but no one realised they were more than a rather beautiful intellectual curiosity for another 50+ years. They are useful in displays because their alignment can be switched on and off by an electric field, so allowing individual pixels in a display to be separately addressed. Getting large areas of such displays to work perfectly with low energy consumption and high contrast are all technological issues; the basic physics (and requisite chemistry of the molecules) has now been known for many years. ...So, in the century and more since liquid crystals were first identified, they have transformed from an esoteric if attractive curiosity to a key class of materials in our everyday world. Things would look very different without them, as a quick appreciation of the screen on which you read this will make you realise." via The Guardian

What did you think about today's news? Leave a comment here and share your thoughts.

Friday
Jan252013

Display Technology News Roundup 1.25.2013

Image via Zebra Imaging

3D holograms assist battle preparation "Holographic maps developed by Zebra Imaging (Austin, TX) and sponsored by a US Army contract allow soldiers to view three-dimensional (3D) landscapes and cityscapes prior to entering a battle zone. The technology, which has other uses in both military and civilian applications, relies on software that converts light detection and ranging (lidar) data into an up to 24 × 36 sq-in. rollable laser-written holographic display that can be observed using a simple flashlight, without the need for special viewing glasses or goggles." via Laser Focus World

How an E-ink Screen is Made (video) "The following video shows the CMO of E-ink, Sriram Peruvemba, as he explains the steps involved in making an E-ink screen. " via The Digital Reader

Electrowetting displays: Brighter than LCD, lower-power, and daylight readable "In an electrowetting display, a small blob of black oil takes the place of liquid crystal. In its base state, the black oil is opaque and doesn’t let any light through. Apply some electricity, the electrowetting of the substrate increases, the oil becomes a tight bead — and voila, lots of light passes through. Repeat this for all three RGB subpixels and you have a computer display." via Extreme Tech

Texas Instruments wants LCDs out of cars "The LCD touch screen has become commonplace in cars, but the technology suffers from limited shaping. Texas Instruments used its Digital Light Processor (DLP) technology to come up with a display that could take a wide variety of shapes in the car, and allow touch control for people wearing gloves." via CNET

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Acer denies making touchscreen alliance "He said neither the company nor its chairman are involved in assembling a touchscreen industry alliance in Taiwan. The Chinese-language Economic Daily News reported yesterday that Acer chairman and chief executive officer Wang Jeng-tang was organizing the nation’s first touchscreen industry alliance to take on industry rivals such as Samsung Electronics Co of South Korea."via Taipei Times

Touchscreen restaurant table forecasts the end of human interactions "Moneual has unveiled a design for a touchscreen cafe table that can display apps to help diners browse and order off the menu. ...Designed to feature touchscreen menus, order placement interface, and payment options, the Touch Table would be the one stop shop for cafe-goers to enjoy a Seamless-esque experience by interacting solely with computers and minimally with humans." via Digital Trends

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Touch Screens Moving Beyond Smartphones and Tablets "The current trend of using iPads or other multi-touch tablets with dedicated apps for certain specific purposes may be innovative, but it won't be sustainable or economically scalable beyond a point. It is here that the necessity for dedicated multi touch devices comes into the picture. There is massive potential in this arena, and companies like Sollensys are leading the way forwards. " via Huffington Post

PaperTabs electronic paper expected to replace computers "PaperTabs, created at Canada's Queen's University in partnership with Intel Labs and Plastic Logic, look similar to sheets of paper with black printing. But PaperTabs are actually flexible computers powered by the latest Intel chips with 10.7-inch touchscreens and the ability to interact with other pieces of electronic paper. Lay one PaperTab beside another and they can work together to display a larger image, for example. PaperTabs can also be used simply to read large documents, with users bending the PaperTab each time they wish to virtually flick to the next page." via Perth Now

Xbox display technology turns your room into a ‘holodeck’ of sorts "Microsoft gave a demonstration of a new research project called Illumiroom that fills a room with lights and images that coincide with what’s being shown on a TV screen. The experimental display tech uses Xbox Kinect — in conjunction with a projector — to scan the appearance and geometry of the room." via Venture Beat

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

Cockpit display innovators to convene at Avionics Europe 2013 "“Few humans would disagree that of our five senses, sight and touch are perhaps the most important. Avionics displays embody sight and touch via an increasingly important role for pilots, crew, passengers, and maintenance personnel alike,” affirms Vance Hilderman, president of Atego HighRely. ...Avionics Europe 2013 will take place 20 and 21 Feb. 2013 in Munich." via Avionics Intelligence

Inventing DualView: Displaying two images at the same time "The technology’s origins lay in 3D – specifically glasses-free 3D, most recently seen in Nintendo’s 3DS and 3DS XL handheld games console. Much like the 3DS, DualView combines a normal LCD with parallax barrier technology, displaying two pictures simultaneously by separating the direction of light from each pixel into two directions. But unlike glasses-free 3D, which tricks the eyes into seeing a single three-dimensional image by layering two 2D images, DualView uses the tech to display two 2D images simultaneously." via Humans invent

£25M Graphene R&D Centre With Backing from Nokia, Plastic Logic & Others "Material scientists and nanotechnologists get very excited about the potential of graphene — a one-atom-thick sheet of bonded carbon atoms which is exceptionally strong, lightweight and flexible and is a better conductor than silicon – but they are not the only ones to see huge potential in it. Nokia, Plastic Logic, Philips, Dyson, and BaE systems are among more than 20 industry partners who have pledged £13 million worth of support for a new graphene R&D centre to be established at Cambridge University. ...The new Cambridge Graphene Centre aims to develop graphene from a material with a lot of raw potential — researchers have already been looking at how graphene could improve battery capacity, and exploring its water-repelling properties — to a point where it can “revolutionise flexible, wearable and transparent electronics”." via Tech Crunch

Will Samsung use diamond or hexagonal sub pixels in their new AMOLEDs? "Reportedly, Samsung are developing hexagon and diamond shaped pixels. This means that Samsung will increase the resolution but the picture will suffer due to jagged pixel artifacts and blurring. It's probably that at such high pixel density this won't actually be noticed, but still." via OLED-Info

A Dual-Screen Smartphone "But it seems to me like the most clever, the most innovative, the most useful way to employ double screens is also the most obvious one: to turn your smartphone into a tablet. What I want–what everyone wants, I think–is the screen real estate of a tablet, with the convenience of a device that fits in your pocket. The trend right now is to try to find a middle ground with tablet-phone hybrids called “phablets” (see “Review: Galaxy Note”). The only problem: phablets are often awkward." via MIT Technology Review

Is Apple changing its mind on touch panel structures? "Calvin Hsieh, senior analyst at DisplaySearch, cites a report from China that Innolux has delivered "touch on display" samples for the iPhone, another China report that Innolux and AU Optronics have provided "one-glass solution" (OGS) samples for the iPad Mini, and his firm's own analysis that the iPhone 5 uses in-cell touch technology but the iPad mini uses a glass/film dual ITO (GF2, or DITO) structure. With both those processes struggling to attain good yields, could Apple end up changing its display technology adoption midstream?" via Solid State Technology

Plasmag Technology successfully develops TCP film "EDN quoted representatives of Plasmag as stating the technology has a simplified production process and low cost advantages over ITO films. EDN also quoted market observers stating they believe the technology will replace ITO film in the future for conductive touch screen materials, most notably for use in tablet products." via DigiTimes

What did you think about today's news? Leave a comment and share your thoughts.

Wednesday
Dec122012

The Display Industry News Roundup For 12.12.2012

Image via CNET / Sean John / Macy's / Recom Group

Would you wear a video display on your sleeve? "The display comes from Recom Group and was discovered at geek heaven, also known as the Consumer Electronics Show. ...The concept is a bit geeky but intriguing. Right now, I can't imagine walking around with a glowing screen on my sleeve, but then again five years ago, I'd never imagine a cell phone as my most faithful palm companion." via St. Louis Post-Dispatch

New Touchscreen Capable of Working in Bright Light "The key innovation behind hybrid tracking is that instead of blocking the infrared light emitted by external sources, it embraces it. This is implemented by tracking shadows of the external infrared light and combining that information with reflections that the built-in infrared sensors 'see' through the LCD." via Digital Signage Connection

Continuously Falling Notebook PC Panel Prices "Tablet PCs continue to capture consumers’ favor, as those who care more about content consumption than creation value portability and convenience, and thus tablet PCs are taking share from traditional clamshell notebook PCs. At the same time, economic concerns have hampered enterprise IT spending, which hits notebook PCs in particular." via DisplaySearch Blog

Samsung to reveal some exciting new tech at CES 2013? "They may unveil the new display used in this phone - perhaps the rumored 5" Full-HD AMOLED panel. Some say that Samsung will unveil a flexible panel, but I think it's quite unlikely." via OLED-Info

How electronic parts distribution and the LCD industry are changing "The electronic parts industry boomed in the 1990s and early 2000s, but major industry changes are forcing companies to adapt. In those days, middlemen such as parts brokers thrived on wide profit margins for parts and direct access to manufacturers in Asia. It was a simple formula: find buyers and sellers of parts and turn part numbers into profits. But profit margins on electronic parts have eroded with improved manufacturing and lower costs." via Display Alliance

Display database for engineers Search thousands of display panels by multiple characteristics and compare them side-by-side using the display database multisearch.

Special Interest Group for Stereoscopic 3D in Education (SIG3D) "The new SIG3D group’s aim is to improve learning and teaching through communication and collaboration between its members, providing professional development and resources for the effective implementation of educational stereoscopic 3D technologies as well as showcasing high-quality applications, pertinent research and instructional best practices." via 3D Vision Blog

Holographic Television at the MIT Media Lab "Research since the early 1960s has attempted to build true holographic television, but until very recently the prospect has seemed distant. The authors' group has for several years concentrated on developing holographic displays suitable for consumer applications, adding constraints of mass manufacturability, low cost, and compatibility with mass-market computational resources such as might be found in PCs or game consoles. A resurgence of consumer interest in 3-D displays, combined with several relevant technological developments, makes this an opportune time to explore re-imagining holographic displays as part of a home in the near future rather than in fictional spacecraft in the far-off future." via The Society for Information Display

Apple Patent A Reminder That It’s Working On Google Glass-Style Wearable Tech, Too "Apple’s vision is still more focused on wearable media delivery, versus the AR-type features that Google is making the central feature of its Project Glass device, which is also where Microsoft seems to be headed according to its own recent patent filing. But all of these massive tech companies are clearly trying to plant their flags for the next stage of mobile tech, which begins to look increasingly like it’ll take the form of something we wear, not something we carry." via TechCrunch

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Samsung To Introduce Unbreakable Display For Next Gen Galaxy S IV "According to Reuters, Samsung is a frontrunner in developing unbreakable screens. That's because Samsung has a big interest in OLED (organic light-emitting diode) displays, and a feature of OLED panels is that plastic material can replace glass substrate." via Hot Hardware

Video: Fraunhofer's COMEDD OLED program "The Fraunhofer's COMEDD published a new video explaining all about COMEDD and its activities and the OLED production process." via OLED-Info

China FPD Conference "SEMI today announced that the 2013 China FPD Conference and ASID will be held concurrently in Shanghai for the first time. ...According to NPD DisplaySearch spending on manufacturing equipment for flat panel displays is forecast to rise 121 percent from $3.8 billion in 2012 to $8.3 billion in 2013. ...DisplaySearch forecasts that the majority of FPD equipment spending in 2013 will be used for new low temperature polysilicon (LTPS) fabs and fab processes for use in both TFT LCD and AMOLED (active matrix OLED) displays. FPD China will bring together the leading buyers, specifiers, engineers, suppliers and other key players to discuss and plan the next stage of China's display industry growth." via Solid State Technology

In pixel wars, LCD has staying power, refuses to die ""OLED still has a long way to go to become a mainstream display, as it has to become bigger and improve picture quality," said Chung Won-seok, an analyst at HI Investment & Securities. "The use of OLEDs will continue to be confined to small displays at least for the next 2-3 years. Its usage as a mainstream TV panel is only likely in 2014, but even then there's a possibility of intense competition with LCD TVs as that technology keeps improving."" via Hindustan Times

OLED TV Prices May Be Lowered By New Polymer Development "For years, indium has always been viewed as the most ideal material for anodes, due to its conductive and transparent properties. But times have changed, and with the material become increasingly more expensive and difficult to obtain, researchers have been forced to try and come up with an alternative. ...Scientists working together at Iowa State University’s Microelectronics Research Center and the US Department of Energy’s Ames Laboratory believe they have finally hit on to something: a 15-year old polymer poly (3,4-ethylene dioxythiophene):poly (styrene sulfonate), known more simply as PEDOT:PSS." via HDTVtest

Are you an engineer or have display expertise? Email jason@displayalliance.com to become a featured contributor in the Display Alliance knowledge base.

Touch screens go optical "The capacitive touch screen, which works by changing the local capacitance of metallic layers in the screen, reacts to very light touches and is durable but expensive to manufacture. Resistive touch screens, where conducting layers are separated by a flexible material that is compressed locally on touch, are cheaper but delicate to fabricate, especially for larger sizes. ...We devised a touch screen where light is confined in a waveguide that reacts to touch." via SPIE

Why would someone repair an LCD rather than buy a new panel? "On the other hand repairing the LCD panels is very useful for the manufacturers, because they usually get a shorter warranty period for the LCD panel than they provide to the end customer. Thus, they carry the expenses resulting from this discrepancy. The price of the repair of an LCD panel in Elsin is about 20-50% of the price of a new panel. Therefore, the total saving at mass production level is significant." via Display Alliance

USPTO may invalidate another of Apple's key multitouch patents "US Patent #7,479,949, claiming a "[t]ouch screen device, method, and graphical user interface for determining commands by applying heuristics," essentially covers iOS's ability to respond when a user is trying to scroll vertically in a document, or trying to move around within the document in multiple directions. It also covers iOS's ability to discern the difference between swiping among images in a gallery, or panning or zooming within the image. The patent is sometimes referred to as the "Steve Jobs patent," as Jobs' name is listed first among the many Apple engineers cited as inventors of the patented claims." via Ars Technica

One step closer to telepathy with BCI technology "...brain-computer interface technology (BCI) has brought us one step closer to making direct brain-to-brain communication a reality. ...What Professor James has done is record the activation pattern in the visual cortex of one individual, use a computer to convert this activation pattern into flashing LED lights of different frequencies and transmit these light patterns to the brain of another person. The result is that the second individual “sees” what the first was imagining." via Neuro Gadget

Digital Display Technology: An Introduction to Digital Signage "What kind of display will best meet the deployment needs: plasma or LCD? What are the pros and cons of each? How will digital technology change in the next five, 10 or 20 years? What about terminology — what is the language of digital technology?" via Self Service World

What did you think about today's news? Leave a comment and share your thoughts.

Tuesday
Sep252012

The Information Display News Roundup For 9.25.2012

Image via Max Aguilera-Hellweg / Wired

Glass Works: How Corning Created the Ultrathin, Ultrastrong Material of the Future "The key to Gorilla Glass is that the compression layer keeps cracks from propagating through the material and catastrophically letting tension take over. Drop a phone once and the screen may not fracture, but you may cause enough damage (even a microscopic nick) to critically sap its subsequent strength. The next drop, even if it isn’t as severe, may be fatal. It’s one of the inevitable consequences of working with a material that is all about trade-offs, all about trying to create a perfectly imperceptible material." via Wired

HannStar reportedly enters iPad supply chain "The rumors claimed that since Apple has been decreasing its orders to Samsung Electronics for panels used in the iPad due to disputes between the two companies, the US vendor has begun shifting some of the orders to HannStar." via DigiTimes

Holographic storage may yet knock magnetic media off its perch "To store the data, a laser beam is split into two beams, a signal beam and a reference beam. The signal beam passes through a liquid crystal display, which shows a page of binary information, as clear and black boxes. The beam then travels into a light sensitive polymer or crystal substrate, carrying the information from the LCD." via Tech Radar

Do you need display panels? Ask Jason. I'm the managing editor of Display Alliance but I also source panels for Mass Integrated, Inc. Just let me know what you need: jason@displayalliance.com

CMI, AUO have low AMOLED yields, say sources "The sources indicated that CMI currently has 20% yields for its AMOLED technology, which uses white AMOLED with color filters. ...AUO uses traditional vacuum deposition technology for producing the panels and has had issues with bringing yields up beyond the 50% rate." via DigiTimes

Ultra High Definition Display Manufacturing in Asia Boosted by Three New Linde Plants "Improving electron mobility in transistors is crucial in bringing higher resolutions and higher frame rates to TVs, mobile and computing devices. The manufacture of UHD 3D displays is currently expensive, requiring the use polysilicon transistors, which cost twice as much as those using amorphous silicon." via Herald Online

3-D display screen tilts along multiple axes "Sriram Subramanian, a Professor of Human-Computer Interaction in Bristol University's Department of Computer Science said that the ability to tilt along multiple axes distinguishes the display from previous devices. He believes that such displays could be used in a range of applications such as terrain modeling and gaming. " via Vision Systems Design

Want to be interviewed for Display Alliance or submit your own content? Get in touch with me: jason@displayalliance.com

Tobii and NTT DOCOMO Show Unique Eye-tracking Tablet "Developed in partnership with NTT DOCOMO’s manufacturing partner, Fujitsu, the ibeam prototype uses the most advanced and compact eye tracker in the world, theTobii IS20 (formerly Tobii IS-2), allowing an unsurpassed eye-tracking experience when using the device. The ibeam will also showcase the future possibilities of natural user interfaces for computers and tablets using gaze interaction. With this capability, users can also interact with the tablet hands-free while still retaining complete functionality of the device." via Display Central