FREE

Subscribe to the display technology news roundups. You can also post your own content in the open section.

Display Industry News Roundups
Delivered via email

Twitter

Entries in ITO (4)

Thursday
Dec172015

Display Technology News Roundup 12.17.2015

Image via Cineplex Digital Solutions

Display Alliance is sponsored by Smarter Glass (www.smarterglass.com), a leading distributor and solutions provider with nearly 15 years specializing in the global LCD display industry and PCAP touchscreens. This blog is an open resource for the display industry and welcomes content and sponsorship from readers. Contact us to discuss how we can work together on Display Alliance. For display panels, visit the Smarter Glass display database to search and compare thousands of panels side-by-side.

How art and interactivity are painting a new digital signage experience ""People are accustomed to being presented with information and data and often have expectations about how it is delivered," said Matt Arnold, lead engineer for Second Story, part of SapientNitro. "Displays which employ an unusual or even artistic approach to displaying information can have an emotional effect on viewers, resulting in a more impactful and lasting experience." In some creative use-cases, Arnold said, information can be delivered to viewers in an ambient way that "envelops" them without their explicit awareness. "If you want to engage an audience through displays, you first must recognize that the display canvass is only a small part of a wider context of information that they are witnessing. When they are idle, the displays which blend into the environment and provide an ambient layer of story and information have more impact than those that are 'always on,'" he said. "When content reacts to the presence of viewers or adjusts with the context of their surroundings, it becomes more relevant to viewers. Displays that show the same messaging regardless of their environment can become background 'noise' and ignored by your audience." The human brain, which makes up only 3 percent of body weight but eats up to 20 percent of body energy, is hardwired to conserve energy wherever possible, said Ed King, vice president of strategy at MaxMedia, and that means it usually takes the path of least resistance. "When confronted with words, numbers or icons/graphics, the brain always looks for the 'quick answer.' By creatively visualizing data, wayfinding and other digital signage, retailers stand a better chance of communicating their message more efficiently and effectively to customers," he said." via Digital Signage Today

2017 Mercedes-Benz E-Class Has All The Display Screens "Mercedes-Benz gave everyone a look inside its new 2017 E-Class by virtue of a video (watch Video) released last week, and it’s covered in digital displays. As for the exterior, the manufacturer hasn’t shown us what it looks like just yet—but might have accidentally given a hint. ...As far as what’s officially inside of the new car, the E-Class features more video displays and less actual buttons. It’ll even mark the first time that a car has touch-sensitive control buttons on the steering wheel, which respond to finger swipes—similar to the functions on a smartphone—to control the car’s infotainment system. If the driver doesn’t want to swipe, he or she can switch the car over to respond to voice commands. Even for a person who likes options, this car has a ton of options." via Jalopnik

Will Apple Cause the Death of LCD Displays? "If Apple does leap, the broader choice of suppliers will be one factor influencing its choice. While Samsung, its arch-rival in smartphones, controlled the OLED field, it had a real incentive to stay away from that technology, rather than increase the amount of business it gives to the Korean firm (which already manufactures many of its processors and is a major memory vendor). So Apple used its power to support other companies in pushing LCD technology to its limits in terms of screen resolution, color intensity, performance and so on. If it moves to OLED – as it has already for the Apple Watch – it will hit a whole supply chain. One of the Japanese firms which saw its value fall on the reports was Minebea, which makes backlights for LCDs, while another was Nitto Denko, a supplier of film. In general, LCD displays use more components than OLEDs, because they need color filters and backlights, so the industry shift away from them, as the OLED market gets more competitive and affordable, will be a negative for many of these specialized technologies." via Rethink Research

Toshiba Will End TV Production "Toshiba’s retreat from TV manufacturing highlights the company’s growing focus on nuclear power infrastructure and other business-to-business operations and a shift away from its consumer businesses. It also marks the increasing relapse of Japanese manufacturers in the global home electronics market, losing ground to overseas competition. Toshiba in 1959 became the first company in Japan to produce a color television. The TV business has since been a centerpiece of its operations, best known in recent years for the Regza series of liquid crystal displays introduced in 2006. But the division has been bleeding money since 2011 in the face of intensifying competition from South Korean and Chinese manufacturers." via The Japan Times

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Which Is the Better Display? Quantum Dot vs OLED "QDs are currently reliant on a backlight, the deep black accuracy and contrast ratio will still suffer from similar drawbacks as existing LCD displays. Therefore, OLED should still win out when it comes to contrast and high dynamic range imagery, as it can switch off pixels for a pure black dot, but QD displays will still see a boost in brightness over traditional LCD. This leads us onto viewing angles, an area that OLED again boasts superiority over LCD displays and this is unlikely to change much with the introduction of Quantum Dot displays. Because backlight based displays require a filter layer rather than producing light directly on the surface, some light is blocked when you don’t look at the display from head on. While perhaps not likely to be a major problem on your small mobile phone, Quantum Dot displays won’t match OLED’s viewing angles until designs come along that eliminate the need for a backlight." via Android Authority

New Material Could Make Touchscreens More Affordable "ITO is a transparent conductor used in more than 90 percent of the display market and has been the dominant material for the past 60 years, said researchers from Pennsylvania State University. In the last decade, the price of indium has increased dramatically, and displays and touchscreen modules have become a main cost driver in smartphones and tablets, making up close to 40 percent of the cost. In other words, while memory chips and processors get cheaper, displays get more expensive from generation to generation. The Penn State team has reported a design strategy using 10-nm-thick films of an unusual class of materials called correlated metals. In most conventional metals, such as copper, gold, aluminum or silver, electrons flow like a gas. In correlated metals, such as strontium vanadate and calcium vanadate, they move more like a liquid. The electron flow produces high optical transparency along with high metal-like conductivity, the researchers said. " via Photonics.com

New 360-Degree 3D Hologram Imaging Technology "Korean scientists developed a hologram display technology that can realize holograms in 360-degree three-dimensional (3D) color image, which often appears in science fiction films such as Star Wars and Minority Report. It will be used as a core technology that allows users to watch hologram images in smartphones or ushers an age of hologram TV. The Electronics and Telecommunications Research Institute (ETRI) announced on Dec. 2 that it developed a “tabletop holographic display” technology that reproduces 360-degree 3D hologram at a size of 3 inches. A Hologram produces 3D photographs by using interference and diffraction properties of light waves. At present, commercialization is not possible due to technical limits. Only MIT in the U.S. and Japan's National Institute of Information and Communications Technology (NICT) have demonstrated hologram technologies that enable users to view images from within an angle of 20 degrees. The ETRI said that real hologram technology uses diffraction of light waves, unlike fake hologram that is used in hologram shows." via BusinessKorea

India's First 'Display Variant' Debit Card "Axis Bank today said it has launched a 'display variant' debit card which does away with the hassles of generating one time password (OTP) over SMS while transacting. The card, which is being made available for high-value NRE customers, has an embedded EMV chip, a display screen and a touch-sensitive button which helps generating the OTP on the card itself. "This OTP, in conjunction with the user ID and password, allows the customer to transact on internet banking without having to wait for OTP delivery via SMS or email," a bank statement said, adding that it is the first lender in the country to offer the facility." via Business Standard

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

How Can Industrial Digital Signage Lead to Increased Productivity? "But what about signage in the industrial space? How can these communication devices enhance the quality of operations at plants, warehouses and other similar sites? What advice should you be giving industrial customers on how to make best use of digital signage? Typically, hundreds or thousands of employees work at industrial plants, so communicating to everyone across the board is a tall order. Netpresenter, a Netherlands-based signage provider with locations in the United Kingdom, Germany and the United States, says its multichannel solutions improve safety, enhance internal communications, and foster employee engagement. Here are several ways that can happen: 1) Put key performance indicators (KPIs) front-and-center near production lines - Industrial plants can go a long way toward helping workers keep tabs on actual, and target production numbers by posting them in real time on digital displays. Signs can also feature output data, as well as comparisons against a set target or previous period to keep workers motivated to do their jobs." via Channelnomics

HP Inc. Is Bringing Its Giant Virtual Reality Display Into Healthcare "HP’s VR machine, called Zvr, isn’t your typical VR hardware like the Oculus Rift headset. Rather, it’s a 23.6-inch display connected to four cameras that track its user’s head movements. A set of glasses turns images into 3D, and a stylus allows the user to move 3D objects around and poke at them. Now HP hopes to bring the Zvr into the medical world in collaboration with medical software upstart EchoPixel. The Mountain View, Calif.-based startup makes 3D medical visualization software that turns diagnostic scans into 3D models. Those 3D projections of, say, an organ, can then be studied in VR. The hardware-software partnership is intended to be used to diagnose ailments or assist in planning operations. Typically, EchoPixel CEO Ron Schilling explained, a doctor sits in front of a computer looking at multiple medical imaging scans and tries to make sense of them in 2D. EchoPixel’s pitch is that turning these scans into 3D models will help doctors identify overlooked issues. For example, 3D scans could make it easier to identify a polyp, abnormal tissue growth, in an organ." via Forbes

Apple reportedly opens ‘secret’ display laboratory in Taiwan "Apple has opened a “secret laboratory” in Taiwan to develop new display technologies, according to a new report, citing sources who are familiar with the company’s plans. The facility employs “at least” 50 engineers who are working to build better displays for iPhone and iPad. “Apple has recruited from local display maker AU Optronics Corp. and Qualcomm Inc., which used to own the building, the people said,” reports Bloomberg. “Apple began operating the lab this year as it aims to make products thinner, lighter, brighter and more energy-efficient.” Apple is thought to be working on more advanced LCD displays, as well as OLED displays that are thinner and do not require a backlight. Recent rumors have claimed the company is interested in bringing OLED displays to iPhone in the coming years." via TechnoBuffalo

Converting Stereoscopic 3-D Video Content For Use In Glasses-Less 3-D Displays ""Glasses-less" 3-D displays now commercially available dispense with the need for cumbersome glasses, but existing 3-D stereoscopic content will not work in these new devices, which project several views of a scene simultaneously. To solve this problem, Disney Research and ETH Zurich have developed a system that can transform stereoscopic content into multiview content in real-time. ..."The full potential of this new 3-D technology won't be achieved simply by eliminating the need for glasses," said Markus Gross, vice president of research at Disney Research. "We also need content, which is largely nonexistent in this new format and often impractical to transmit, even when it does exist. It's critical that the systems necessary for generating that content be so efficient and so mobile that they can be used in any device, anywhere." Multiview autostereoscopic displays, or MADs, enable a 3-D experience by simultaneously projecting several views of a scene, rather than just the two views of conventional, stereoscopic 3-D content. Researchers therefore have begun to develop a number of multiview synthesis (MVS) methods to bridge this gap. One approach has been depth image-based rendering, or DIBR, which uses the original views to build a depth map that describes the distance of each pixel to the scene. But building depth maps is difficult and less-than-perfect depth maps can result in poor quality images." via ECN Magazine

Are you an engineer or have display expertise? Contact us to be featured in the interviews section.

Force-sensing Touchscreens to Address Industrial Applications "With recent Apple product announcements raising consumer awareness and interest in force-sensing touchscreens, a supplier of projected capacitive touchscreens figures the time is ripe to bring similar capabilities to the factory floor and other environmentally challenging environments. ...Developed specifically for industrial and similarly challenging applications, TouchNetix' pressScreen is designed to enable mouse-type functionality with the use of a single finger on the touchscreen. It uses capacitive measurement technology and a new sensor structure and geometry to detect very small front lens displacements. TouchNetix expects this interface to allow entirely new use cases to be developed. Possible applications the company envisions include: In systems requiring high integrity, confirming that a touch is intentional; emulating mouse clicks by pressing the surface. (As use case examples, TouchNetix offers a video demonstration of a prototype “press-to-zoom” application, and another, demonstrating a paint application in which finger pressure modulates line width.)" via IHS Electronics360

Does How You Record Ideas Impact Creativity? "A tech VC recently asked me, "Do you even use your iPad anymore? I think they are over." To which, I replied—perhaps a bit too loudly—"Yes!" There is nothing over when it comes to the potential of touch. Apple’s investment in the iPad Pro and Pencil only reinforces this. Designers need tools that disinhibit the brain to allow room for creativity to happen. In this sense, the touch screen is one of the device revolution’s most important gifts to creatives. Touch can make the sought-after "ah ha" come easier. While still a new frontier, neuroscientists such as Rex Jung, assistant professor of neurosurgery at the University of New Mexico, have looked closely into brain structure and function to better understand creativity—as opposed to intelligence. If you think of the brain as a series of pathways—where intelligence is like the speed and accuracy with which one makes connections along the paths—creativity occurs when the brain makes unexpected or new intersections." via Fast Company

Do Computers Need Pressure-Sensing Screens? "So we’re only just beginning to see what pressure-sensitive screens will mean for how people use phones. And a lot of that is because developers are still figuring out what to do with the technology. “Anyone who’s a repeat early adopter of new iPhones shouldn’t be surprised that support for the 6S’s flagship feature [3D Touch] remains scattered close to three months in,” wrote Jacob Kastrenakes for The Verge. “It was the exact same way at this point when apps had to update for the iPhone 6’s larger screen—it took Starbucks an entire year—and apps lagged behind on adding Touch ID support, too. 3D Touch is going to be even harder.” ...For Magic Piano, figuring out what to do with 3D Touch was obvious. “For the original version of Magic Piano on the original iPhone, as soon as you touch your finger on the screen, it registers the touch and it plays the note,” said Yar Woo, the vice president of engineering at Smule, the company that makes Magic Piano. “But for 3D Touch it’s a little different. It’s more of a curve, not a single point of impact.” 3D Touch relies on 96 sensors beneath the phone’s screen. Magic Piano developers ended up introducing a small latency—just enough of a pause after the moment someone touched the screen, to be able to tell whether they’d end up pressing harder. “Just that tiny fraction of a second to know that the user is pressing hard versus pressing soft,” Woo told me. “We delay it 30 milliseconds. You can’t really notice it when you’re actually playing.”" via The Atlantic

Sharp set to spin off LCD unit in deal with Japan Display "Sharp Corp. is closer to spinning off its struggling liquid crystal display business and integrating the unit into rival Japan Display Inc. in a state-backed deal, sources said Tuesday. ...Both Sharp and Japan Display, suppliers for Apple Inc.’s iPhones, have faced intense price competition from Asian rivals." via Japan Times

What did you think about today's news? Leave a comment here and share your thoughts.

Monday
Jun232014

Display Technology News Roundup 6.23.2014

Image via Sharp

How will Sharp's free-form display affect design? "The electronics maker has announced a prototype Free-form Display that can be made in whatever two-dimensional shape is required. Potential applications include dashboard displays incorporating multiple circular contours, wearable computers with elliptical screens, tablets and smartphones without frames, and complex digital signage. Instead of incorporating the gate driver on the perimeter of the display, the Sharp prototype disperses its function throughout the screen’s pixels. The bezel, or area that surrounds the screen, can thus be shrunk. While it’s not the first non-rectangular LCD screen, Sharp’s prototype is the first thin-bezel LCD that allows for various screen shapes, the company said." via PC World

Samsung's $1 billion LCD plant in Vietnam "In 2009 Samsung inaugurated its mobile phone production plant Samsung Electronics VN in the northern province of Bac Ninh. The plant had an initial investment of $670 million, which eventually increased to $2.5 billion. Four years later, the $2 billion Samsung Electronics VN Thai Nguyen complex broke ground in Thai Nguyen, another northern province. Around 43,000 employees are working at the Bac Ninh facility, and the Thai Nguyen complex is expected to attract up to 50,000 workers. It is estimated that Samsung’s two plants in Vietnam will produce $35 billion worth of mobile phones this year." via Tuoi Tre News

Are Samsung’s New AMOLED Tablets Better Than Their LCD Tablets? "Samsung will certainly be preaching about the advantages of its AMOLED display – take a look through some of the photos in the gallery and you will see that when it comes to Color Reproduction, using the Adobe RGB Gamut that the AMOLED display captures 94-percent and the LCD only 74-percent. When it comes to Contrast Ratio, you can get 100,000:1 versus 1,000:1 on the LCD display. This higher Contrast Ratio offers more vivid – jump out at you – colors and deeper blacks than the LCD technology can provide. Many users have complained that the AMOLED display does not faithfully reproduce the colors of the original image, while AMOLED supporters say they enjoy getting a more attractive display experience." via AndroidHeadlines

What is AU Optronics' place in the display industry? "It wasn’t until the mid- to late- 2000s that LCD displays swamped the consumer electronics market. Suffice it to say, they’ve had an incredible impact in a short time. As such, AU Optronics has similarly high impact in the industry...although few seem to know it. The company makes both LCD and AMOLED displays with its thin-film transistor (TFT) technology. Each display works differently, and with consumer demand for both, AU Optronics is satisfying that demand. Its Hyper-LCD displays offer even greater viewership through “Advanced Hyper-Viewing Angle” (AHVA) technology, which gives flawless picture quality, even at various angles. But its AMOLED technology is really raising the bar." via Trefis

How does Amazon's Fire Phone create a 3D multi-perspective display? "Amazon's finally unveiled its first smartphone: the Fire Phone. And, as expected, there are 3D-like features on board, with something the company's calling Dynamic Perspective. ...Bezos said during the presentation that getting Dynamic Perspective ready for everyday users wasn't easy. "The key is knowing where the user's head is at all times," he stated, citing the need to have multiple cameras (remember those?) on the Fire Phone to make the feature work properly. In total, the device has six cameras -- four of which have a 120-degree field of view and are used specifically for Dynamic Perspective, plus your usual front and rear shooters." via engadget

How is Corning's anti-reflective display coating revolutionary? "The anti-reflective coating needs to be applied to both sides of the display and will drop the reflectivity of the screen from standard 8% to mind-boggling 1%. The coating which is applied using Zero Air Gap technology reduces reflection as you can see from the video below. ...The coating improves contrast and outdoor readability from 40% to a staggering 123%. There is a 90% reduction in reflectance, while the display will deliver 3X more colour in outdoor situations. (Video)" via Techtree

Could virtual reality displays be made consumer-ready with eye tracking? "Kreylos explains that the distance between your pupils is not always constant, and human eyes will occasionally swivel inward to make the light from a perceived object precisely hit the high-resolution fovea on the eye's retina, depending on how virtually “far away” an object is. Kreylos explains that your eyes can “swivel in” if the screens are displaying something particularly close to you in the virtual space (like when you would bring a finger to your nose to go cross-eyed as a kid), and that can cause nausea without eye-tracking because the image projected by the Oculus will appear distorted as well." via Ars Technica

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Bosch introduces “combiner” head-up displays for BMW "The combiner system merges the images that are generated by the car’s instrument panel with the scenery outside and makes the combined picture look as if it is two meters in front of the vehicle. The information isn’t projected on the windshield but is displayed on a small plastic screen placed just before it. The technology can be fitted to various types of car models without any major technical modifications. Bosch said the new type of head-up display provides easier visual access to the information because a driver doesn’t have to refocus as much as with conventional systems." via automotiveIT

LG Loses Exclusive Supplier Contract for Apple's In-Cell Displays "To save face, LG is now saying that they had been experiencing numerous limitations bound by an agreement for exclusive supply right with Apple, which holds a number of patents. LG Display can now broaden the scope of its movements as the exclusive supply agreement has expired recently and it has secured "Advanced In-cell Touch (AIT)" technology to avoid limitations imposed by Apple's patents. The report further noted that LG Display developed AIT to circumvent Apple's patents. The biggest difference between AIT with In-cell touch display for Apple is that it is applied with self-capacitance technology, which evolved from the conventional touch type to an individual recognition of the fingers touching the display. Apple has adopted mutual-capacitance technology to concurrently recognize a multiple number of fingers." via Patently Apple

When a brand name outlives its founding technology: PureView and CBD "One of the most frustrating things about marketing and branding, from my engineer's standpoint, is that technologies get brand names assigned to them (which is fine) and then the brand name gets used elsewhere, for something totally different. ...Now, Nokia owns the 'brand' here. If it (or, in this case, now Microsoft, I guess) wants to use 'ClearBlack Display' to refer to a simple lamination then that's absolutely its perogative. Heck, Nokia could use CBD branding on a toaster if it liked - it can do what it likes with its own marketing brand. But it's the changing definition that leaves technologically-minded users confused. Even more so because the new 'definition', an ambiguous 'aim', has been applied in a device with definitively worse outdoors performance. The PureView change was at least a totally different direction that was intended to be folded into the original tech in the future. This 'ClearBlack Display' definition change just muddies the waters, in my opinion." via All About Symbian

Is OLED Dead? "UltraHD sets were once again everywhere at CES 2014, while OLED had a lower-profile presence. Most of the OLED TVs were curvy this year. Some could even transform from flat to curved. They all looked good, but the novelty of seeing UltraHD sets and OLED sets had largely worn off. It was the third straight year they were on display at CES. Instead, the most interesting developments at the show involved dramatic improvements in LCD picture quality. Advancements in LCD panels are closing the picture-quality gap between OLED and LCD—and the latter are much more affordable and cheaper to produce." via Wired

Why is AUO no longer merging with Innolux? "Taiwan's Ministry of Economic Affairs has given up plans to have domestic flat panel makers AU Optronics (AUO) and Innolux merge due to a disagreement on the leadership after the merger, our sister paper Commercial Times reported on June 17. ...Officials said that the ministry's research predicted potential for 15% growth for the country's flat panel sector after the merger. Yet now that the two companies have worked out debt repayment plans with banks, the merger plan became less important for both, as they have received more orders over the past few months." via WantChinaTimes

Will Taiwan's flat panel display industry be overtaken by rivals? "Taiwan's flat panel display exports to China have lagged behind South Korea for the fifth consecutive year. The island fears it will lose more market share to its rivals, especially after Seoul and Beijing complete their free trade deal at the end of the year. Taiwan was once the world's biggest flat panel display supplier to the greater China market. Between 2003 and 2008, Taiwan held more than 35 per cent of the Hong Kong-China market. But while Taiwan sat on its laurels, China and South Korea started cranking out flat panels." via Channel NewsAsia

What new high-quality polymer could be used for LCD glass? "Asahi Kasei Chemicals has developed new transparent polymer for high performance optical applications, which is now ready for commercial production. The material called AZP offers zero birefringence by using novel molecular design. Asahi Kasei is building new manufacturing facilities for production of AZP at its Chiba Plant (Sodegaura, Chiba, Japan). This new material is expected to replace glass in LCD panels used in smartphones, and in-car navigation systems." via EE Herald

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

SID Applauds Winners of Display Industry Awards "The Society for Information Display (SID) celebrated the winners of the Display Industry Awards, Display Week Best in Show and I-Zone during its annual Awards Luncheon yesterday. This year’s winners include: 2014 DISPLAY INDUSTRY AWARDS Display of the Year: Granted to a display with novel and outstanding features such as new physical or chemical effects, or a new addressing method." via Display Central

Could Touchscreens Be Reinvented By This Tiny Startup? "Qeexo is hoping to emulate Steve Jobs. Backed by $2.3 million, the San Jose, California-based startup has developed a new touchscreen technology that can detect the difference between a fingertip, a knuckle, a fingernail, and a stylus. By assigning different parts of the finger to different actions, this technology–known as FingerSense–could reduce tasks that currently require multiple steps to just one. “You can imagine it’d be like having different buttons in your hand,” explain’s Sang Won Lee, the company’s co-founder and CEO. The iPhone, and indeed the entire smartphone industry, have evolved dramatically since that day in 2007. And yet, for all the features that have been tweaked and perfected over the years, the language Jobs taught us has remained unchanged. We still use a single input–a fingertip–to operate the device. And that limits the way we use our phones. " via Wired

Will Touchscreens Soon Be Shatterproof? "That heartbreak may be a thing of the past due to research out of the University of Akron: a new transparent electrode material that makes the screen virtually shatterproof. There has been a huge push in nanomaterial research with the aim of finding a replacement for indium tin oxide (ITO), which is the material from which transparent conductors that control screen pixels are made. One of the problems with ITO is that it’s a relatively scarce resource, and with the market for tablets and smart phones exploding, that scarcity has become more acute. This market shortage, combined with the brittleness of ITO-based screens, explains why a variety of nanomaterials have been given a “market pull” opportunity rather than merely a “technology push” prayer." via IEEE Spectrum

TFT displays can be cut to size "TFT displays of a custom size, and optically bonded displays for example, are becoming available with initial non-recurring engineering (NRE) charges a fraction of those associated with a full custom display and the minimum economic order is low. For example, designers everywhere are keen to eliminate drab LCD character modules from their systems and replace them with colour graphic displays, often including touch control. However, TFT displays are made in standard formats and until now, the cost of manufacturing a custom size has been uneconomic for most industrial applications. Manufacturers now have flexible processes which make it is possible to cut standard small format TFT displays to a specified height, opening up new application areas." via Electronics Weekly

How to implement haptics in touch-based user interfaces "Transitioning from mechanical buttons, knobs, and dials to a capacitive touch interface, however, poses a challenge to designers because there is no tactile feedback present with capacitive touch sensors as exists with mechanical buttons and switches. For example, consider the experience of typing on a keyboard. When a key is pressed and released, it bounces back due to spring action. A person can feel the force of the key bouncing back with his or her finger and thereby confirm the key press. With a capacitive touch interface, there is no inherent mechanical feedback, and users do not have the same experience as that of mechanical keys. The absence of tactile feedback poses a challenge to designers in that their primary goal is to improve user experience. Through haptics technology, developers can provide tactile feedback, improve the user experience, and add value to products." via EDN

Is thermal touch a new interface option? "We’ve been conditioned as technology users to look for touch -- it’s really the default user interface for most technology now. Wearable device makers have proposed multiple interface solutions: voice navigation, depth tracking for finger detection, companion devices, and even things as novel as shoulder-mounted projectors. Though these options are a great start, we’ve found many of them lacking, or even, frustrating for the average user. But what if we could turn any surface into a touchscreen? This was the idea we tasked ourselves with after discovering the potential gain in marrying thermal imaging with traditional computer vision algorithms. Our mobile prototype runs on a Lenovo ThinkPad tablet PC, to which we attached a combined thermal and visible light camera module. The fixture is simply a joist hanger I purchased at a local hardware store. (Video)" via EE Times

7 Futuristic Display Interfaces from MIT's Media Lab "Any design nerd, futurist, or techie worth his weight in salt has heard of the MIT Media Lab. Few, however, have heard of the Fluid Interfaces Group. No, it’s not a smooth jazz outfit—it’s a division of the famous Media Lab, and home to some of the niftiest display prototypes and interface designs this side of the Mississippi. ...Fluid has been around for at least seven years, but recent advances in mobile, sensor, and display technology seem to have inspired a wealth of breathtaking new projects. Here are seven recent ideas that offer a glimpse at the future of interface technology." via Reviewed.com

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

Where are cockpit displays headed? Q&A with cockpit manufacturer Continental "By just looking at a 10 year old cockpit, we would immediately see what is expected nowadays for a mid-range segment: it has to look high tech with a full colour TFT [thin film transistor] display in the cluster as well as in the centre stack. For the secondary display, touch functionality is becoming the norm. It has to be connected to your smart phone - USB, BT, mirror link - and include a lot of sensors mainly related to safety such as rearview camera, rain detection and park assist. With the increasing number of functions in the car, ease of use is becoming more and more important. So, a well structured HMI [human machine interface] concept is required." via just auto

Google Glass Enters the Operating Room As Medical Display "The Glass projector is slightly above the user’s right eye, allowing doctors to see medical information without turning away from patients. But the display can also be used to see email and surf the web, potentially allowing doctors to take multitasking to dangerous new levels, said Dr. Peter J. Papadakos at the University of Rochester Medical Center, who has published articles on electronic distractions in medicine. “Being able to see your laparoscopic images when you’re operating face to face instead of looking across the room at a projection screen is just mind-bogglingly fantastic,” he said. “But the downside is you don’t want that same surgeon interacting with social media while he’s operating.”" via The New York Times

Will next-gen smartphones have sensors built into display glass? "Corning International, which makes the material commonly used in mobile device screens, has teamed up with researchers at Polytechnique Montreal to create a new type of glass that incorporates transparent sensors. Soon, the glass in your smartphone screen could be used to take your temperature, among many other possibilities. The team used lasers to carve photonic waveguides into regular Gorilla Glass, at varying levels within the thickness of the glass. Each one of these acts as a tunnel, which photons can travel through in the same way that electrical currents flow through copper wires." via gizmag

Are 3D holographic displays on their way? "Carlsbad, Calif.-based Ostendo Technologies is readying a potentially game-changing technology that may make its way into upcoming generations of connected gadgets. In such a scenario, visuals can be rendered three-dimensionally, as holograms. This means that tedious tasks, such as shopping for a couch on your smartwatch, would be made easier with the option of beaming up life-sized replications. ...An industry veteran and the former chief executive of mobile chipmaker CommQuest, Hussein S. El-Ghoroury has spent the last eight years homing in on a way to shrink the entire process down to a circuit the size of a piece of chewing gum. He made his first breakthrough using a technique that allowed silicon to effectively bond with light-emitting diodes, which he compares to mixing oil with water." via The Washington Post

Miyamoto Interested in Virtual Reality, But Sees a Conflict With Wii U ""We've been doing our own experiments with virtual reality dating back to the Virtual Boy," he said, referencing Nintendo's failed VR system released in 1995. "And even to some degree, the 3DS was designed with a little bit of this in mind with its stereoscopic 3D. So we're always looking at hardware and assessing what's possible." He pointed out that, while the price of VR has begun to drop, "It's still not at a cost basis that makes it easy for everyone to purchase as a mass-market product." "As game designers, we at Nintendo are interested in VR technology and what it can do, but at the same time what we're trying to do with Wii U is to create games for everyone in the living room," he continued. "We want the Wii U to be a game system that brings video gamers into the living room."" via Gamespot

Manufacturing: The forgotten industrial digital signage application "Imagine an industrial plant where management wants to communicate vital information to hundreds of workers. Perhaps it's production quotas vs. actual performance; perhaps it's mean time between accidental employee injuries; perhaps it's delivery information regarding vital components that are en route. In all of these instances — and others too numerous to recount here — digital signage has the ability to convey to a workforce important information that is vital to employees maintaining a safe, efficient environment. Digital signage for manufacturing is an excellent reminder that ROI can occur in so many ways; let’s not forget it when we figure ROI for any industry." via Digital Signage Today

Sony Delivers Immersive Keynote at SID Display Week 2014 "At SID Display Week 2014 in San Diego, CA, USA on June 3, Sony executive Dr. Kazumasa Nomoto delivered an opening keynote address that laid out the firm’s view of the future for their display products. Dr. Nomoto chose to frame his presentation around the immersive nature of the display viewing experience using the term “Immersiveness.” The presenter identified the factors influencing display immersiveness as Resolution (4K/8K), Size, Wide Color Gamut (WCG), High Dynamic Range (HDR), and High Frame Rate (HFR). For example, he cited the effect of high display resolution on Immersiveness contrasting a 2K (1920×1080) HD display viewed at a distance of 3 screen heights resulting in a 30 degree display field of view with the more immersive viewing experience resulting from viewing a 4K (3840×2160) 4K (UHD) display viewed at a distance of 1.5 screen heights yielding a 60 degree field of view. Both distances correspond the the minimum distance to not see pixels." via Display Central

What did you think about today's news? Leave a comment here and share your thoughts.

Saturday
May312014

Display Technology News Roundup 5.31.2014

Image via Wired

How Did Oculus Rift Make Virtual Reality Real? The Inside Story "But even these couldn’t give Luckey the immersion he craved. When he put them on, he felt like he was looking at a play space, not living inside of it. “It wasn’t garbage,” Luckey says, “but it wasn’t virtual reality.” The image quality was poor, because the transmissive LCDs weren’t high-contrast. The head-tracking latency was off the charts, causing a nauseating lag every time he turned his head. But most of all, the field of vision was too narrow. He could always see the edge of the screen, which meant his brain could never be truly tricked into thinking it was inside the game. Luckey figured that he had as good a chance as anyone to solve those problems. So he tinkered, and tinkered some more, and one night in November 2010 he announced to the world—or at least to the message-board denizens of a 3-D-gaming news site called Meant to Be Seen—the existence of PR1 (for Proto­type 1), his first stab at a virtual-reality device. It was a cumbersome beast, built on the shell of a headset from his collection. It displayed only in 2-D and was so heavy that it needed a 2-pound counterweight in the back. But thanks to a massive chassis that could fit a nearly 6-inch display, it boasted a 90-degree field of vision, an angle nearly twice as large as anything else on the market." via Wired

How Can New Transistors Bring Flexible Screens Closer to Reality? "The electronics world has been dreaming for half a century of the day you can roll a TV up in a tube. Last year, Samsung even unveiled a smartphone with a curved screen, but it was solid, not flexible; the technology just hasn’t caught up yet. But scientists got one step closer last month when researchers at the U.S. Department of Energy’s Argonne National Laboratory reported the creation of the world’s thinnest flexible, see-through 2D thin film transistors. These transistors are just 10 atomic layers thick--that’s about how much your fingernails grow per second." via PCB Design 007

Tribute for liquid crystal display pioneer "Mathematician Frank Leslie, who died in 2000 aged 65, developed a theory of liquid crystals while working at the University of Strathclyde. ..."Engineers use the Ericksen-Leslie equations to optimise their flat-screen displays, making them thinner, faster and higher resolution. "Chemists use the Leslie viscosities to help make new improved liquid crystal materials, which can be used for both displays and for other applications, such as in biology. Professor Leslie's research is so influential that if you look around, you will probably spot at least one screen - maybe the computer screen you have on your desk or the mobile phone in your pocket - that has been developed with the aid of his equations."" via BBC News

Industry's first non-ITO film-based 42" display "The module was built by Amdolla Group, a leader in advanced touch module manufacturing, using Cima NanoTech's highly conductive, silver nanoparticle-based, SANTE® FS200 touch films. ...With a scan rate of 150hz for 10-point multi-touch, rivaling the response time of smartphones and tablets, this jointly developed product dramatically increases the speed of large format touch displays. Unlike optical and infrared touch solutions, this module does not have a raised bezel for a smooth cover glass. In addition, the random conductive mesh pattern formed by SANTE® nanoparticle technology eliminates moiré, a challenge for traditional metal mesh technologies, thus enabling touch screens with better display quality." via Printed Electronics World

Medical Imaging Display Market Shows Robust Growth "In the surgical display market, larger screens with higher resolutions are becoming more common and affordable and many are already being installed in surgical rooms, as collaboration among medical professionals, both on-site and virtual, becomes more popular. ...In addition, several key trends in the flat panel display market, including the shift to LED backlights, large, high-resolution 4 MP and 6 MP displays that can be split, color displays that can accurately show both color and grayscale images, and the wide availability of 4K displays, is expected to have different impacts on the various segments of the medical imaging market." via eWeek

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

How does oleophobic/hydrophobic coating enhance display glass durability? "Abrisa Technologies introduces CleanVue PRO™, a severe abrasion resistant oleo/hydrophobic coating that repels dirt, dust, water, grease and oil, enhancing display glass performance and longevity. This protective coating is well-suited for high performance anti-reflective (AR) coated cover glass for displays used in high contrast, heavy use and/or harsh environments. The resulting coated surface is easy-to-clean and maintain, does not stain, allows repeated removal of fingerprints, all while maintaining its anti-reflective properties. CleanVue PRO™ is ideal for protective vehicular instrument control panels and devices, field use touch and display panels, projected capacitive (PCAP) and capacitive touch screens, portable handheld devices, teleprompters, virtual reality applications, in-flight and vehicular entertainment screens and a host of other display devices." via ThomasNet

Will the Demand For Higher Generation Glass Substrates Drive Corning’s Display Volumes? "Glass substrates are manufactured in different sizes which are indicated by the “Generation”. Higher Generations have a larger area. Display panel manufacturers prefer higher Generation glass,specifically Generation 8, since it is much more economical. In the third quarter of 2010, 41% of LCD TV panels were produced using Generation 8 LCD glass. By third quarter of 2013, the number increased to 87%. Additionally, with improvements in glass manufacturing process, higher Generation glasses are becoming thinner and lighter and can be used to produce display panels for a variety of other devices, such as smartphones and tablets. In the third quarter of 2010, the use of Generation 8 glass substrates was limited to LCD TVs and monitors. However, by the third quarter of 2013, Generation 8 glass substrates received acceptance in display panels for notebooks, tablets and smartphones, albeit accounting for a small proportion. The over demand for Generation 8 glass substrates is expected to increase 3% by the third quarter of 2014." via Trefis

Display industry prepares for SID 2014 "The 51st SID International Symposium, Seminar and Exhibition, or Display Week 2014, will take place June 1-6, 2014 at the San Diego Convention Center in San Diego, Calif. Display Week is the premier international gathering of scientists, engineers, manufacturers and users in the field of electronic information displays. For more information on Display Week 2014, visit www.displayweek.org or follow us on Twitter at @DisplayWeek. Display Week-related tweets can be created, viewed and shared using the hash tag #SID2014." via IT Business Net

Will Sony and Panasonic form OLED Display Panel Collaboration With Japan Display? "Cracking the cost formula for big OLED TVs is still a challenge for the industry as a whole, but Japanese manufacturers hope they may still have chance to compete against South Korean rivals in smaller-size panels through a three-way tie-up, one of the people said. Japan Display, owned around 35% by a government-backed fund, is the world's biggest maker of smartphone and tablet displays and has a pilot line at its plant to develop OLED screens. Having listed its shares in March, the company itself was formed two years ago through a merger of the LCD units of Sony, Hitachi Ltd. and Toshiba Corp." via The Wall Street Journal

Why Did Samsung Blow Large Screen Smartphones? "A recent Canalys report noted a trend showing demand for larger displays shifting to premium smartphones. But, despite the company's dominance in the large-screen smartphone category, Samsung may be missing the boat. In Samsung's most recent quarter, the company reported slowing demand for its premium smartphones. And despite increases in total smartphone shipments, profits for the company's mobile business actually declined. What Samsung failed to realize: When larger displays are reserved for premium devices, the high value of the feature can be used to support a company's premium pricing tier and help buyers quickly identify a company's flagship products." via The Motley Fool

Can augmented reality be made more comfortable? ""Minimizing visual discomfort involved in wearing AR displays remains an unresolved challenge," says first author Hong Hua of the University of Arizona. "This work is making a significant step forward in addressing this important issue." A lightweight, compact and high-performance Google Glass-like device-called an optical see-through head-mounted display (OST-HMD)-could potentially be "a transformative technology to redefine the way we perceive and interact with digital information," Hua says. For example, it could one day allow a doctor to see computed tomography (CT) images overlaid on a patient's abdomen during surgery or provide a new way to train soldiers by incorporating 3-D virtual objects into real-life environments." via Space Daily

'Thermal Touch' Tech Turns Any Surface Into a Touch Screen "Sure, wearable headsets are practical and fun, but are they reaching their full potential? Not according to augmented reality firm Metaio, which this week unveiled a thermal imaging system for use in AR headsets. The company's initial Thermal Touch prototype attaches infrared and standard cameras to a tablet, which then tracks the heat signature left behind when you touch a surface. Still about five or 10 years away from hitting the market, the technology will eventually focus on heads-up displays (HUDs) or interactive spectacles. (Video)" via PC Magazine

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Taking touchscreens into the third dimension "While some end users will continue to prefer designs with buttons and knobs, touchscreens have become sufficiently robust and low cost to make them a viable alternative. ...Microchip has taken it to a new dimension. Literally. Using its GestIC technology, user interfaces can be taken into the third dimension, allowing gesture recognition at distances of up to 15cm from the sensor. The chip containing the GestIC technology is the MGC3130, which features a low noise analogue front end, integrated digital signal processing unit, frequency hopping against noise and recognition of XYZ positional data – most specifically hand gestures. "There is also preprocessed gesture recognition [on the chip]," said Duvenhage. "You could do normal waves in specific direction, or you can do more complicated gestures, like a circle or the equivalent of what we call an 'air wheel' where you can adjust something by rotating your hands clockwise or counterclockwise."" via New Electronics

How can military augmented reality displays be commercialized? "ARC4 isn’t a pair of sci-fi glasses; in fact, it’s not a hardware system at all. Rather, it’s is a software system that accepts inputs from a sensor module made of cameras, satellite information, and head tracking technology, and fuses it all into a display that can be overlaid onto someone’s field of vision. Functionally, the end product makes walking around look a lot like playing a first-person shooter game like Halo. In the military, it provides real-time information to soldiers about their environments, even if their vision is obstructed. ...In a military setting, ARA has used hardware like BAE System’s Q-Warrior display—a large, expensive device that fits in on the battlefield but never takes off in a store. But the ARC4 systems don’t have to be installed on huge devices, says Allan York, ARA’s senior vice president. “Essentially, in a package the size of a sugar cube, you can have the sensing components necessary.”" via The Daily Beast

Is hologram-guided heart surgery a heartbeat away? "This proprietary digital technology from RealView Imaging in Yokneam projects hyper-realistic, dynamic 3D holographic images of body structures “floating in the air” without the need for special glasses or a conventional screen. The physician can literally touch and interact precisely with the projected three-dimensional volumes, providing an unprecedented tool for planning, performing and evaluating minimally invasive surgical procedures. Cofounder Shaul Gelman explains that the breakthrough technology can be summarized as very rapid printing of light in free space. The system is fed with data from standard medical imaging sources, such as ultrasound." via Israel21c

WORM display lets you write with light "Scientists at Universiti Malaysia Pahang (UMP) have developed displays that can be written on and erased with light. The WORM (Write Once Read Many) display is an optical storage device whose molecular geometry can be altered by shining light on it, allowing information in the form of words or pictures to be impressed on it in as little as 20 seconds. The environmentally-friendly display is also easy to dispose of, the researchers report, as users only have to scratch its surface to remove its protective coating and dip it in water to dissolve it. The displays are created using highly photosensitive compounds and can be written on using ultraviolet (UV) light. To fabricate the display, the researchers mix the compounds with liquid crystals and create two substrates. Transferring information involves placing a photo mask containing the data on top of the second substrate and exposing it to UV light with a wavelength of 365 nm." via Gizmag

A Crazy Levitating Display, Made With Particles and Projectors "Pixie Dust, as the team is calling it, builds on their previous system, which used a four-speaker array to summon objects into the air and move them around in three-dimensional space. ...Projection-mapped particulate ghosts are likely still a ways off. Still, the demos here are a fine holdover–and a reminder that our the possibilities of next-gen displays extend to far more than pixels trapped in a frame. (Video)" via Wired

Tactile touch technology "A conventional tactile touch system (e.g., smartphones) presents the same sensation over the entire surface so that all fingers coming into contact with the surface experience the same sensation. In contrast, the new NLT tactile touch technology provides regional stimulation, which is provided by electrostatic force. The electrostatic force is generated by the beat phenomenon in a region where excited X electrodes cross excited Y electrodes, which presents tactile sensation to the users. The tactile touch technology applied to the panel provides multi-finger interaction." via SPIE

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

Display panel makers steaming ahead at full capacity "Industry research institute WitsView recently stated that a momentous boom is poised to carry the panel-making sector through the third quarter, straining production at near capacity. According to the institute, the display panel industry is in the early stages of a transition toward newer product specifications, resulting in strained production output as companies work toward improving manufacturing yield rates and materials consumption efficiency. In addition, the rise of new panel specification is expected to divert limited production capacity from more conventional display panel formats and constrain supply." via The China Post

Could Apple use solar-charging touchscreens on future iPhones, iPads, or iWatches? "The new patent describes a “solar cell stack-up configurations” that includes one or more touch sensor layers and one or more solar cell layers. ...“Using solar cells on portable devices, particularly handheld portable devices with small form factors, however, poses certain technical and/or design problems. For example, the small size of the portable device means there is a small surface area which can be used for placing solar cells. This surface area is typically further reduced by other components that appear on the surfaces of the devices such as input devices and display devices. Since the maximum solar energy that can be produced from a solar panel is roughly proportional to the surface area of the solar cells, this reduces the amount of solar energy that may be gained from the solar panel,” the patent read." via Digital Trends

Will ITO disappear as a display manufacturing material? "Similarly, we all know about indium tin oxide, the transparent conductor commonly known as ITO, and the crucial role it plays in LCD manufacturing and in touchscreens. Some estimates say that more than 80% of indium use is in these applications, and the stuff is used in other areas such as solar PV arrays, too. I’ve heard a few voices that say the price will just continue to rise and rise, and companies will be lucky to get enough to make their screens. They may want to pause to draw breath. Companies like Kodak and Cambrios have been working on the printing of very fine silver wires. By fine, think much thinner than one micron. Because of the conductivity of silver, this still works in carrying sufficient current to an LCD pixel or identifying location on the surface of a touchscreen. ...This doesn’t mean that ITO use will be eliminated. Indium is a by-product of zinc production, by and large, and so the price could likely drop a long way before hitting negative gross margins. That means the cost of ITO can also drop a long way. It seems likely that silver wires and ITO could share the display and touchscreen markets, maybe with silver wires dominating in areas where power consumption is critical. But the idea that indium price and demand will just continue to rise indefinitely is likely wrong." via InvestorIntel

How the US Navy Is Pushing the Touchscreen Envelope "The Navy will soon field its first 3-D Weapons Launch Console Tram Trainer at the Submarine Training Facility in Pearl Harbor, Hawaii. ...The screens — some up to 55 inches — are not just touch-sensitive but pressure-sensitive. There’s no mouse-clicking to make things happen; sailors are expected to reach out and “grab” the objects they want to manipulate. ...In fact, this simulator is pushing the state-of-the-art in haptics, or tactile feedback, and is helping to move the simulation industry itself to a new level." via DefenseNews

Automotive Displays: Visteon OASIS Cockpit Concept "Optimized. Adaptable. Secure. Intelligent. Seamless. In collaboration with Cisco, this cockpit concept securely connects all aspects of the vehicle to the user profile and cloud services. It uses a secure data pipe that actively switches methods (modem, phone tethering, WiFi®), while maintaining a seamless connection to the cloud. This makes the cockpit adaptable through personalization, off board computing and intelligent vehicle module updates - giving the user and auto manufacturers intelligence about user interactions and preferences to improve the HMI experience. For more information about this and other exciting concepts, visit visteon.com. (Video)" via YouTube

What did you think about today's news? Leave a comment here and share your thoughts.

Tuesday
Nov262013

Display Technology News Roundup 11.26.2013

Image via ExtremeTech

IGZO display tech finally makes it to mass market "Low-temperature polycrystalline silicon (LTPS) is another alternative to a-Si that has higher electron mobility and thus excellent image quality, but LTPS is difficult and expensive to manufacture. One of the best examples of LTPS is the new Kindle Fire HDX, which is probably the only device on the market that has a better display than the iPad Air. According to Raymond Soneira at DisplayMate, the iPad Air’s use of IGZO reduces the display’s power consumption by 57% over last year’s iPad 4 — a huge reduction for a single generation." via ExtremeTech

How to build a "stealth" computer display "Brusspup specializes in optical illusion. He noticed that if you completely remove polarizer P1, an LCD display shows essentially uniform illumination with a varying pattern of polarization over the screen. However, as the human eye is not very sensitive to the polarization of light with which it sees the world, an LCD display from which the final polarizing film has been removed appears to be bright and featureless." via Gizmag

Are PC Displays Still Needed? "From the success of crowdfunding for cheap displays, there is clearly a need on the market for low-cost digital screens. The fact that prices for this equipment continue to drop will provide a stimulus to new and innovative uses for displays by businesses, especially by small and midsize companies where budgets are tight. Displays may eventually become a cost-saving commerce solution for advertising and marketing departments." via Midsize Insider

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

How MIT Invented A Screen That Lets You Reach Through And Touch Things "They call it inFORM. Unveiled this week, the device employs 900 plastic pegs on a square grid that can be raised or lowered to form shapes. A depth camera tracks the shape and movement of the input (your hand, your dog... whatever) and displays it with the pegs." via International Science Times

Why Smartphone Makers Are Racing to Build Flexible Screens "Just as liquid-crystal displays supplanted cathode ray tubes years ago in televisions, Korean display makers are now concentrating their efforts in organic light-emitting diode screens, which offer more vivid colors and can be made even thinner than liquid-crystal displays, since they don't require a backlight. Display makers in Japan and Taiwan have also been experimenting with different types of flexible screens though they haven't been able to reach mass production." via The Wall Street Journal

What is the future of displays? Qualcomm's Toq Smartwatch Displays "The Toq uses MEMS to produce the IMOD effect. Interferometric Modulation creates colors in a different way than LCDS or OLEDS. Essentially, the MEMS that comprise the display have two elements: coated glass on top and reflective membranes on bottom. An air pocket between the two layers is what creates colors depending on what type of electrical charge is applied to the pixel." via ReadWrite

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

New liquid crystal structure reported by Kent State researchers "A research group at Kent State University has described and documented the structure of a new type of liquid crystal that had been predicted theoretically, but never seen. The new "twist-bend nematic" liquid crystal, one with a spiral twist, was observed by a Kent State research group led by Oleg D. Lavrentovich, Ph.D., D.Sc., trustees research professor of chemical physics and former director of the Liquid Crystal Institute at Kent State. The new type of liquid crystal, akin to a new species in biology, might enable new technologies, ranging from faster-switching display devices to biological sensors, Lavrentovich said." via Record-Courier

Is Ink-Jet Printing the Key to Next-Generation OLED Displays? "Kateeva’s setup—available as of today to display makers—features a movable platform that precisely positions glass panels or plastic sheets large enough for six 55-inch displays beneath custom print heads. Each head contains hundreds of nozzles tuned to deposit picoliter-scale droplets in exact locations to build up the pixels of a display. The company says the tool can be incorporated fairly easily into existing display production lines. Kateeva cofounder and president Conor Madigan says the system, based on the same technology in consumer ink-jet printers, eliminates the need for a step in the conventional manufacturing scheme that increases the risk of defects in the displays." via MIT Technology Review

New chip can detect gestures in front of tiny wearable displays "A fledgling company, Chirp Microsystems is developing a gesture-based operating system to work with a new chip that uses sound, rather than vision, to track the user’s movements. ...Inspired by medical technology, the system uses ultrasound, rather than light, to detect hand gestures within a range of about a meter. The system can sense gestures that don’t occur directly in front of its display, and it uses far less battery power than existing gesture camera-based interfaces: It runs up to 30 hours continuously on a tiny battery." via Singularity Hub

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

Touchscreen display coating market to see major shift in technology "Indium Tin Oxide (ITO) now has a 95 percent market share for touch-screen transparent conductive coatings. At the same time, shipments of non-ITO films are forecast by IHS to increase 320 percent this year. By the end of 2017, shipments of alternative technologies--such as silver nanowire, copper mesh, silver mesh, silver halide and silver nano particle--will account for 34 percent of the market, reducing ITO's share to 66 percent." via FierceMobileIT

Could Biological Semiconductors Transform Tech Industry? "The semiconductors are known as quantum dots and are made from naturally occurring organic compounds called peptides, short chains of amino acids, the building blocks of proteins. ...In a demonstration, Mr. Rosenman shone a blue light (the backlight in an LCD TV is blue) onto tubes containing different solutions of quantum dots. The tubes lit up in red, green and blue—the constituents of any display. “There is a cost saving of about 10 times compared to other displays,” said Mr. Myersdorf. “The manufacturing process is the same as for making OLEDs.” An OLED is an organic light-emitting diode, commonly found in some smartphones and TVs." via The Wall Street Journal

New Twists On Autofocus, Multitouch, And Energy Harvesting "Qeexo has not built a new MEMS device; rather, it’s using information from the accelerometers already built into smartphones and tablets in a new way. ...Qeexo’s software analyzes the vibration generated when you touch the screen and determines whether you’re using your fingertip, knuckle, fingernail, or a stylus. Apps can then use that information to allow different types of touches to perform different function—a knuckle swipe, for example, could highlight text instead of scroll down the page; a fingernail could bring up a menu. It seems simple, but it’s not so easy to implement: Schwarz said she’s met with manufacturers who aren’t interested at first, then come back and tell her that they tried and failed to replicate the technology and are now ready to talk." via IEEE Spectrum

How To Add a Touch Interface to your Hardware with Touch Board "Want to create an interactive design with touch interface? Well, the Touch Board may be just what you are looking for. Arduino compatible, the Touch Board comes with 12 capacitive touch channels and will respond to anything conductive that is connected to one of the channels. You can turn on a light, ring a doorbell, or even play midi music, all from your very own Touch Board." via Engineering.com

What did you think about today's news? Leave a comment here and share your thoughts.