FREE

Subscribe to the display technology news roundups. You can also post your own content in the open section.

Twitter
146-inch 3D 3D Micro LED 3D Printing 4K 4K2K 8K ACEP Aledia Amazon AMOLED AMS767KC04-1 Anti-reflective Apple Apple Watch AR ASSA ABLOY Entrance Systems Astra Glass AU Optronics AUO Australia Automotive Automotive Displays Avionic Avionics Avnet Axus Backlight Belkin Blue phase LCD Blue TADF Blue Wave Semiconductor Blue Wave Semiconductors BOE burn-in Buyer Capacitive touch CCFL CCPD CES CES 2019 CGS children China China Star China US Trade War Circular LCD Clothing OLED CMI COF Color Filters Corning Coronavirus COVID-19 CPT CRT CSOT Curved Curved OLED CYNORA D33 Da Qing Dark Mode Digital signage Display Display Week 2019 Dual Panel LCD Dynamic Range E Ink EE Ink Eink Electrofluidic imaging Electronics Electrowetting End-of-life EOL notice ePaper E-paper Factory Fingerprint Fingerprint sensor Fish Scales Flexable FlexEnable Flexible Flexible display Flexible LCD Flexible OLED Flexible Perovskite Flexi-LCD FlexPai Force Touch Foxconn Foxconn Technology Group Fujitsu Galaxy S10 Gesture recognition Global Lighting Technologies Glossy displays Goodix Google Glass Gorilla Glass Graphene graphene-based OFET HannStar haptic Haptography HD Head-mounted display Heads up display High End Panels Hisense HKC Holograph Hot Offer Huawei Human Machine Interface Hybrid IGZO In-cell touch India In-Display Fingerprint Industrial display InFocus Infrared Innolux Interactive Interactive surfaces iPad iPhone iPhone SE iPhone X IPS ITO ITRI I-Zone Japan Japan Display Jasper Display JBD JDI JOLED Kindle Korea large-size LCD LCD LCD iPhone LCD Prices LED LG LG Display LTPS Market Mate 20 Mattrix Technologies Medical Medical Display Merck Meural Micro LED Microdisplay MicroLED Micro-LED Micro-LED TV microsoft Military Military displays Mini LED Mitsubishi Mojo Vision Monochromatic Multitouch Nano Cell Technology Nanoco nanoplatelets Nanowire Netgear News Roundup NHK Nubia OFET OLCD OLED OLED TV OLET Organic Semiconductors Osaka University Osram Panasonic Paperwhite Patents PCAP Philips PHOLED Phone Photocentric Pixels Planar Plasma Plastic Logic PlayNitride Plessey Polarizer POLED POS Screen Price Projected capacitive Projector QD QD-LED QLED Quantum Dot Quantum dots Quantum Materials Corp Radiant Radiant Opto-Electronics Recycling Red Phosphor RIKEN Rohinni ROHM rollable Rollable TV Rugged display Russian Samsung Sanan Sanan Optoelectronics Sapphire Seeya Seren Sharp SID SmartKen smartphones Smartwatch Solar Solar-Tectic Sony Soul Semiconductor Sound on Display South Korea Stereoscopy Stocks Substrate Sunlight readable Tactile Taiwan Tappy Tariff tariffs TCL TCL CSOT Technology TFT The Wall Tianma TN Total Reclaim touch Touchscreen Trade War Transparent Transparent OLED Trump TSMC TV Ulsan National Institute of Science and Technology ultra-fine pitch Ultra-High Resolution Ultrastable Films unbreakable undefined Universal Display University of California San Diego US USA Veeco Video wall Virtual Reality Visionox Vizio VR Vuzix Wah Hong Wearable Winstar Wisconsin XTPL

Entries in Pixels (11)

Thursday
Nov192015

Display Technology News Roundup 11.19.2015

Image via Ultrahaptics

Display Alliance is sponsored by Smarter Glass (www.smarterglass.com), a leading distributor and solutions provider with nearly 15 years specializing in the global LCD display industry and PCAP touchscreens. This blog is an open resource for the display industry and welcomes content and sponsorship from readers. Contact us to discuss how we can work together on Display Alliance. For display panels, visit the Smarter Glass display database to search and compare thousands of panels side-by-side.

Taking Touch-Based Display Interfaces to the Next Level "It is time to take touch-based interfaces to the next level, and a UK startup called Ultrahaptics proposes to do just that by providing multi-point, mid-air, haptic feedback. The company has developed a novel approach using an old technology, promising to overcome the limitations found in current touch-based systems and open the door for a fundamental shift in the way people interact with electronic devices. ...In the medical arena, the incorporation of touch-based interfaces in systems presents its own hurdles. While touchscreens provide a fast and efficient way to interact with healthcare equipment, they also pose hygiene risks arising from the very physical contact that makes the interface so effective. What all these applications require is touch without touch. To meet this unique demand, developers have turned to 2-D arrays of ultrasound transducers, or emitters, to create haptic feedback systems. The arrays create airwaves that stimulate neuroreceptors in the skin, allowing users to feel sensations on their hands. By modulating the output of the emitters, a system can induce a variety of tactile sensations. However, implementing this approach comes with a fair share of difficulties." via IHS Electronics360

4-D laser printing: holograms and beyond ""Not long after we received the NSF funding, we were able to create something called the direct-write laser scanner (DWLS), which allows us to create nearly perfect geometric phase holograms," says Escuti, an engineer at North Carolina State University. "They look like flat, semi-translucent plates, but they give us unprecedented control over the behavior of light. We can use them to make more efficient displays for mobile devices, sensors with greater resolution, and, frankly, we're still discovering all of the potential applications for this technology." To make geometric phase holograms, the DWLS "prints" using an ultraviolet laser on a super-thin film--only about 50 nanometers thick. The film is made of a photoreactive polymer that responds to both the intensity and the polarization of the light. When the DWLS is done printing, a much thicker layer of liquid crystal is applied, amplifying the pattern on the underlying thin film. To understand how the DWLS works, you have to understand that it doesn't have an inkjet--it prints light, and it prints in four dimensions." via National Science Foundation

How LED display technology creates this dazzling, data-driven chandelier "Soaring 33 stories above downtown Pittsburgh and built to use half the energy consumed by typical office buildings, this LEED Platinum-exceeding glass and steel edifice, complete with double-skin façade and solar chimney, has been heralded as the greenest skyscraper ever completed. (Seattle’s six-story Bullitt Center still likely rules when it comes to green commercial buildings.) And as for the Tower at PNC Plaza's main lobby, it's one high-rise lobby that can never, ever be accused of being soulless. ...And, as PNC explains, the installation itself is, go figure, super-efficient: Each panel has liquid crystal film that becomes clear when it receives electricity, or opaque without it. Inside is a grid of 8 LEDs that show a range of colors. These elements can be used simultaneously or separately to create animations with a variety of color, motion, and diffusion. The liquid crystal film draws no energy when opaque and uses very little when transparent, while LEDs use less energy than incandescents, making the Beacon highly energy-efficient." via Mother Nature Network

Can China's LCD Panel Industry Dominate By 2018? "It is being predicted that China will become the world leader in LCD panels in 2018 by beating Korea, as the nation began to make massive investments in LCD panels used in smartphones and flat TVs. Japan’s Nippon Keizai Newspaper reported that China’s four leading display companies, such as the BOE Technology Group, will build seven big factories in China with investments of about US$25 billion for three years. According to the newspaper, the investment volume is very large compared to the fact that Samsung Electronics invests US$3.5 to 4 billion in the LCD business a year. Chinese companies with strong financial support from the Chinese government will lift China over Taiwan in 2017 and Korea in 2018 in terms of the volume of LCD panel production, the newspaper expected. It is said that despite an economic slowdown, China began such massive investments as it intends to escape from the market structure where China depends on Korea and Taiwan for 70 percent of its demand for LCD panels. It is expected that this move by China will give Korean companies two troubles – a drop in exports to China and a price war triggered by an increase in LCD panel supplies by China." via BusinessKorea

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

In Search of the Perfect Pixel: What Are the New Developments in LCD Panels? "Another development that we do not readily see immediately is the inclusion of Simple Network Management Protocol (SNMP) in displays. It is an Internet-standard protocol for managing devices on IP networks. Historically, we have had devices that typically support SNMP, including routers, switches, servers, workstations, printers, modem racks– and now finally displays, as LG showed at InfoComm 2015. SNMP is widely used in network management systems to monitor network-attached devices for conditions that warrant administrative attention. Having this available on large scale displays is a great addition, but one that may be overlooked. Consider the ability to monitor and manage the health of multiple displays across an office complex using standard tools the IT department already has. Also, think about the implications for digital signage applications. One last development that we see gaining traction is System on a Chip or SoC for short. Samsung did most of the pioneering work on this and now has been followed by others. The SoC is a mini computer built into the display in the form of a chip. It can act as a media player for digital signage or perform other computer-based tasks but it eliminates the need for external devices in many cases. Some of these, like the units developed by Samsung run proprietary software, but we are seeing more “open” platforms, like the WebOS SoCs offered by LG, and the Android powered devices offered by BenQ." via AVNetwork

What is "technorating" with digital signage? "Back in 2008, LG Electronics coined the term "techorating" for that latter one, a fusion of technology and decorating, using tech to create or be an element of interior design and decor. At the time, LG was focused more on the consumer- or residential-grade market, even enlisting the help of celebrity interior designer Doug Wilson of TLC's "Trading Spaces" as the first official "Techorator" to develop consumer tips and tricks to guide consumers through the techorating process. Since then, LG and all the digital signage display manufacturers from Christie to NEC to Samsung have explored ways their professional- or commercial-grade displays or projectors could be used in a kind of digital signage techorating for professional spaces and businesses, whether it's in a corporate or hotel lobby, restaurant dining room or even a museum. Display provider Planar Systems Inc. helped lead the charge in the commercial space, with its Mosaic system that allowed its displays to be hung in artistic or unusual configurations for video walls that broke out of the square or rectangular box on the wall. But the trend has moved beyond any one company or even any one industry, as the Society for Experiential Graphic Designers and other professional groups representing architects, interior architects, interior designers and interior decorators have started to take a longer look at including display technology in their plans, sometimes even before a single brick is laid." via Digital Signage Today

All-inorganic perovskite quantum dot display breaks Cd-barrier "Ever since the first cadmium selenide (CdSe) QD-based light-emitting devices (QLEDs) were reported in 1994, the dominant materials for QLEDs investigated since then have been limited to wurtzite or zinc blende Cd-based QDs. Similarly, the best developed and studied colloidal QD lasers have been fabricated from Cd-based semiconductors. Now, researchers have presented a new family of photoelectric materials for light-emitting devices: colloidal all-inorganic perovskite cesium lead halide QDs. This new material could find applications in LEDs and lasers, and has an especially big potential in high-performance displays, lighting, monochromatic narrow-band photodetectors, and optical communications." via Nanowerk

Bright Blue PHOLEDs Almost Ready for TV "Phosphorescent OLEDs (PHOLEDs) use only one quarter the energy of conventional OLEDs. Green and red PHOLEDs are already used in smartphones and TVs, leading to longer battery lives and lower electricity bills, but developing the kind of bright deep blue PHOLEDs needed for video displays has proven challenging. Now scientists have developed what they say are the brightest deep blue PHOLEDs reported so far, work sponsored by Universal Display Corporation and the U.S. Air Force. The researchers added their new lights nearly meet the most stringent requirements of the National Television Systems Committee (NTSC), the video standards used across most of the Americas. "There have been previous works that reported PHOLEDs having similar color as ours, but their brightnesses were very dim, about 10 times less," says study lead author Jaesang Lee, an electrical engineer at the University of Michigan, Ann Arbor. "A combination of high brightness and deep blue color is quite revolutionary."" via IEEE Spectrum

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Can Projectors Compete with Flat Panel Displays? ““Typically projectors are more flexible than flat screen displays because the size of the image projected can be adjusted to meet the needs of the customer and tailored to specific applications,” adds Damien Weissenburger, head of corporate and education solutions at Sony Professional Solutions Europe. “For large rooms which require large screens – more than 75in – or a more flexible format – that is, something other than 16:9 – projection remains the main technology. Projectors often provide a more affordable and flexible solution which can appeal to budget-conscious AV managers.” Versatility, affordability, ease of installation are all contributing to projection’s longevity – even as flatpanel displays are getting larger and, in theory, displacing what would previously have been projection installations. But projectors have an important advantage here too." via Installation

Will touchscreens be replaced by eye-tracking display technology? "Eyefluence, a company that has created a unique eye tracking system for use with today’s virtual reality/augmented reality headsets, emerged from stealth today with a $14 million Series B funding round. “Eyefluence transforms intent into action through your eyes. We believe anything you can do with your finger on a smartphone, you should be able to do with your eyes on a head-mounted display — only faster,” Eyefluence CEO Jim Marggraff told TechCrunch. While Eyefluence isn’t the first eye-controlled operating tool, it claims to be the first one to interpret intent with your eyes in real time. With eye controllers I’ve seen in the past, you need to stare to show intent, Eyefluence wanted to change this to a glance." via TechCrunch

How can large touchscreens be like your smartphone? "The Business Research Company’s report “Touch Screen Market Globally 2015” finds that since 2009, it is projected -capacitive (P-CAP) technology which has captured the highest-volume touch categories of mobile phones. This success has been driven by a feature set which includes an effectively unlimited lifespan conferred by a resistant all-glass surface, edge-to-edge design capability (with no requirement for bezels) and high levels of sensitivity. PCAP manufacturers are now taking this technology to screens as large as 85 inches. Four important aspects of the screen design are: speed, accuracy, EMI immunity and integration. Where consumer phones have to register just one or two touches on a screen of around 4.5-inch diagonal, commercial touch screens of 47-inch diagonal that can register between 10 and 40 touches with a precision of 1mm are now commonplace. The area of a 16:9 format screen roughly quadruples when the diagonal doubles." via ElectronicsWeekly

Automative Touchscreen Buttons You Can Actually Feel "Bosch has come up with an experimental solution to our touchscreen woes: A screen with simulated "buttons" that you can navigate by feel, without taking your eyes off the road. Haptic elements in the screen allow users to distinguish different "keys" on the touchscreen by feel—rough, smooth, and patterned surfaces can be created to denote individual keys or functions. "The keys displayed on the touch screen have the feel of realistic buttons so that it is often possible for users to find their way around the keyboard without looking while operating the applications," Bosch says. "They can keep their eyes on the road for much longer periods, substantially enhancing safety while driving"" via Road and Track

Are you an engineer or have display expertise? Contact us to be featured in the interviews section.

How Can a Touchscreen Know the Angle of Your Finger? "A Carnegie Mellon University spinoff called Qeexo might have just one-upped the iPhone 6s and 6s Plus’s 3D Touch capabilities—and instead of buying a new phone for the new feature, you’d just need to upgrade it.The researchers behind FingerAngle developed a brand new algorithm that allows a smartphone to estimate the pose of a finger, in 3D, as it makes contact with a touchscreen. This includes its angle relative to the display, as well as any rotation of the finger while it’s making contact. It’s subtle, but the shape of a fingertip while pressed against a glass display is very distinct based on what part of the finger is making contact, and its angle. And this is what the researchers rely on to determine a finger’s orientation relative to a touchscreen. So why is this useful? To do on-screen rotations with a touchscreen currently requires the use of two moving fingers. But the tiny display on a device like a smartwatch barely has enough room for a single digit. (Video)" via Gizmodo

'BitDrones' Offer 3D Computer Displays Based on Programmable Matter "How's this for a bad-ass future? "Interactive self-levitating programmable matter." This is how researchers at Queens University's Human Media Lab are describing their new virtual reality scheme, dubbed BitDrones, set to be unveiled Monday at the ACM Symposium on User Interface Software and Technology in Charlotte, North Carolina. The floating interface is enabled by swarms of nano quadcopters (the drones of BitDrones), of which there are three varieties. "PixelDrones" come equipped with a single LED and a small dot-matrix display; "ShapeDrones," which are intended to form the building blocks of 3D models, come covered in a fine mesh and a 3D printed geometric frame; and, finally, "DisplayDrones" are fitted with a curved flexible high-resolution touchscreen, a forward-facing video camera, and an Android smartphone board. All three varieties then come equipped with reflective markers, allowing them to be tracked in real-time using motion capture technology. (Video)" via Motherboard

Planar Introduces Transparent OLED Digital Signage "Reminiscent of those products dreamt up by science fiction filmmakers – where video content seems to float on an almost-translucent display – the Planar LookThru OLED transparent display uses OLED technology to eliminate the need for a backlight or enclosure. According to Planar, transparent OLED technology overcomes one of the main hurdles to transparent LCD display adoption by making it possible to create truly see-through installations unobstructed by enclosures that sit behind the displays. The LookThru OLED transparent display allows users to view video content, digital images and text on a virtually frameless glass display while enabling designers to overlay this content onto real objects or scenes that sit behind the glass. The company first showcased a transparent OLED technology display demonstrator at the Integrated Systems Europe event in February." via Government Video

Wearable Mini-Display Helps Medical Doctors Save Patient Lives "Opting for a minimalist, hands-free approach, user-experience design firm Method, in collaboration with Bay Innovation, have designed a new HUD (Heads-up Display) named Vivi that instantly delivers patient vitals and supplementary materials to doctors mid-operation. Most notable for its simplicity, the wearable pops over one eye when operating and subsequently swivels out of the way when not needed, making for a practical-use case that’s as serviceable as it is modest. Peering into the device, surgeons are presented with a diminutive 8-bit-esque display configurable through their smartphones." via psfk

Apple’s 3D Touch displays on the iPhone 6S or 6S Plus can be used to weigh objects "In a playfully written blog post, Simon Gladman talks about his newest app, which is called the Plum-O-Meter. As its name implies, the app leverages the 3D Touch technology in his iPhone 6S to act as a scale of sorts that tells the user which of the objects placed on the smartphone’s screen is heavier. ...Technically, the iPhone’s multitouch display can simultaneously sense up to five objects at a time, iDownloadBlog points out. "I did originally build this app for grapes, but they’re too light to activate the 3D Touch," Gladman writes in his blog post. (Video)" via Digital Trends

Folium Optics brings plastic displays to medical and defense markets "Folium Optics was founded two years ago by Kitson and John Rudin, after both had worked on display solutions at Hewlett Packard's HP Labs Bristol research center. When HP's goals shifted, the pair set up Folium to pursue flexible displays, and rather than basing their efforts on any existing HP technology, chose to begin with a clean sheet - "applications-driven and technology-agnostic," commented Kitson. ..."We use a similar materials set to a conventional LCD, but dope it with dye molecules. These molecules are rod-shaped and designed to orientate themselves with the liquid crystals under an applied voltage. When the liquid crystals rotate, the dye molecules rotate too." Controlling the profile that the dye molecules present to an observer also controls the strength of color perceived by that observer, and does so without the need for the polarizers or related technology which can contribute to the cost and complexity of other LCD systems. "This principle is called a guest-host LCD and has been known for some years, although it went out of favor as interest focused on backlit displays," noted Kitson. "It has been a little neglected; so we are revitalizing it, improving the materials and combining them with flexible plastics."" via Optics.org

Why Display Manufacturers Need A Hand "While we see some companies capitulate during crystal cycle busts (asset impairments/sales by CPT is a recent example) we have not seen mergers on the scale of AUO buying Innolux or AB InBev buying SAB Miller. Lack of scale economies is one reason for this, perhaps. As I have presented at SID conferences, adding AMLCD area capacity does not seem to reduce AMLCD area cost. A big merger might lead to a swanky party but the hangover would certainly lead to a long-term headache trying to load the increased capacity with profitable product. If there is no advantage to consolidation, we may see the AMLCD industry continue to evolve along national lines of interest. China is doing what it did in LED and PV industries and it hopes to do in the IC industry: cultivate national champions and capture global share. If this is the future, what can we do but give display makers a hand?" via Display Daily

What did you think about today's news? Leave a comment here and share your thoughts.

Tuesday
Sep012015

Display Technology News Roundup 9.1.2015

Image via Polyera Wove Band

Polyera's Wearable Flexible Display Can Roll Up "Polyera today introduced the Wove Band—a flexible display that can lay flat or wrap around a wrist, like a 1980s slap bracelet. Ten years in the making, Polyera Digital Fabric Technology and the Wove Band are expected to launch in mid-2016. Free developer units will be available to pre-order in September, before they ship to a select group of artists and developers in December. ...The Wove Band promises "a flexible, low-power touch display," which combines the company's Digital Fabric Technology with electronic ink film, allowing for an always-on display." via PC Magazine

Will the display screen of the future be a sort of 3D aquarium? "The screen of the future is not a flat panel, but rather a sort of aquarium. If you walk around it, from various sides and angles you will see a single luminous image formed inside something resembling an `aquarium,’ as if by cross-sections. Each is visible thanks to liquid crystals activated from a transparent to dissipative state of light by electric voltage (a movie screen sends out a constant stream of light). If all of the cross-sections are on and rendered visible with a frequency of over 25 frames per second, then moving objects can be observed in an `aquarium’ as a single whole. ...Igor Kompanets is head of the opto-electronics division at the Lebedev Physical Institute of the Russian Academy of Sciences, and an honorary director of the Russian branch of the International Society for Information Display (SID)." via Russia Beyond the Headlines

How Is LG Display Spending $8.5 Billion on Next-Gen Display Screen Technology? "LG Display Co., a supplier to Apple Inc., plans to invest about 10 trillion won ($8.5 billion) over the next three years to develop next-generation screens to reverse slowing growth and gain an edge over competitors. LG Display will shift its investment focus to screens powered by tiny organic light-emitting diodes, or OLEDs, the Seoul-based company said in an e-mailed statement Monday. The world’s largest maker of liquid crystal displays is betting on growth in demand for advanced displays, including foldable screens, for wearable devices, cars and televisions." via Bloomberg

AUO and 3M team up to bring quantum dot 4K UHD LCD panels to mass market "AU Optronics Corp., one of the world’s leading makers of LCD panels for various devices, and 3M this week announced a new technology alliance that can dramatically improve quality of TV-sets and displays. The two companies will offer turn-key solutions that will help suppliers of televisions to offer TV-sets with quantum dot (QD) technology that enables wide color gamut and high dynamic range for ultra-high-definition (UHD) 4K TVs. The QD display enhancement technology significantly improves quality of backlighting in LED LCD panels by integrating a special quantum dot enhancement film (QDEF) with trillions of semiconductor nanocrystals into an LCD panel stack. A quantum dot can emit (or, in the case of QDEF, filter) light at a very precise wavelength. The ability to control the spectral output of a quantum dot allows QDEF to create an ideal white backlight, something that allows to display more accurate red, green and blue colours, thus enhancing color gamut." via KitGuru

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Sharp May Consider LCD Joint Venture Rather Than Sale "Sharp Corp. is leaning toward spinning off its liquid-crystal display business into a joint venture with a third party, rather than selling the unit outright, people familiar with the matter said. Innovation Network Corp. of Japan and Hon Hai Precision Industry Co. are the two leading candidates Sharp is considering for partnership, according to the people, who asked not to be named because the discussions are private. ...If Innovation Network, also known as INCJ, injects capital into the joint venture, it may combine the business with Japan Display Inc., a competitor the Japanese state-backed fund already supports, according to two of the people. There could be antitrust concerns in combining two operations." via Bloomberg

Finally, A Convincing 3D Display That Doesn't Require Glasses "At this year’s SIGGRAPH, a group of researchers presented a display that creates a 3D human in stunning detail using a cluster of 216 projectors. A team from USC’s Institute for Creative Technologies has built an automultiscopic 3D display which essentially makes a 3D model of the person with video. After capturing video of a person using 30 cameras in intensely bright light, the images are divided among the 216 projectors. The projectors are arranged in a semicircle around a large screen, so as viewers walk around the screen their eyes smoothly transition from one projection to the next. The result is feeling as if you can see crystal-clear depth and detail." via Gizmodo

Merck unveils future display technologies at 2015 Touch Taiwan "Pursuing the goal of "The Perfect Pixel" material innovation, Merck has teamed up with local panel makers as a key strategic partner and to provide them with the crucial materials for creating better visual experiences and enjoyment. ...As panel resolution increases, four times of pixels are required to put into the same area, so the number of metal wires that connect pixels is also on the rise. Therefore, it's important to reduce the effects of cross talk that are caused by the increase of wiring density. Merck has acquired AZ Electronic Materials, which is a leading company that specializes in providing high tech materials that enables a high precision manufacturing process for LCD's. Merck's product line is now expanded to include high contrast photoresist that can be used to accurately align the sophisticated wires in lithography process. Also, by using ultralow-K SOG (Spin on Glass) material, light transmission can be effectively increased to improve the yield rate for 4K 2Kpanel manufacturing and cost control." via DigiTimes

Why are LEDs for wearable devices due for a comeback? "OLED devices, especially those on flexible polymer substrates, are thin enough, but suffer from lifetime problems. Neither is as power efficient as would be desired. The solution is to develop and enable a new class of display that uses micro inorganic light emitting diodes (μLEDs) that will be more energy efficient, longer lifetime, and thinner than incumbent display technologies. These won’t be limited to monochrome red, but be full color, sporting a color gamut wider than LCD and rivaling OLED. Given that the number of color primaries is only limited by the number of source wafers, these displays may be multiprimary for greater energy efficiency and wider color gamut. They will be very high resolution, certainly greater than 600ppi. Just as with LCD and OLED displays today, they will be subpixel rendered for better performance and lower manufacturing cost." via DisplayDaily

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Virtual Reality project is like The Matrix built inside a holodeck "The University of Michigan has hosted a 10-foot-by-10-foot virtual reality testing environment covered with projection walls since 1997. Now they’ve reprogrammed the system to be run by the powerful Unreal Engine videogame software, which can be used to create extremely detailed and ambitious environments. Dubbed MIDEN (Michigan Immersive Digital Experience Nexus), the virtual-reality system uses stereoscopic glasses and a gaming controller for motion and perspective. By using the controller, users can manipulate objects in the environment, and potentially move through a virtual world of limitless size. The Unreal Engine allows for the creation of realistic water, foliage or glass, and effects like fire and transitions in the time of day — which go a long way in building the illusion. (Video)" via blastr

How Kyocera is giving touchscreens a real button feeling "Kyocera has introduced a newly patented technology in Europe for real touch feeling and force feedback in display screens. The development of a real button sensation is expected to create a new type of user interface. It can be used in touch panel or touch pad products for a broad range of applications such as automotive and industrial equipment or in the field of information and communications. ...The technical principle of creating this sensation works as follows: the button impression is composed of pressure feeling (a button response feeling with micro-movement only), which is perceived by the finger while pushing the button at first, and a subsequent stroke-down impression (a button response feeling caused by movement). Kyocera’s new technology called ‘Haptivity’ evokes these impulses towards the nerve of the finger and creates the sensation of a real button operation by both pressure detection and specified frequency vibration output features. (Ex. Patent No. EP2461233B1 effective until 2030)." via Electropages

McDonald’s introduces touchscreen ordering and customisation in the UK "Customers visiting the fast food giant can now place and pay for their orders using the screens, which also offer options to help them get their food just the way they like it. ...McDonald’s is looking to an improved customer experience to fight off competition from rival burger chains in the UK including Byron and Five Guys. It recently trialled a table service to provide a more personal experience in Manchester, which also incorporated the placing of orders through digital kiosks." via Business Reporter

Microsoft's prototype keyboard cover has an e-ink touchscreen "Looking to further bridge the gap between slate and laptop, Microsoft Applied Sciences built a prototype device it calls the DisplayCover: a keyboard cover that houses an e-ink touchscreen display. The 1,280 x 305 resolution panel not only provides access to app shortcuts, but it can also handle touch gestures for navigation and accept stylus input. The stylus feature seems to make things like signing documents and scribbling notes a breeze, based on the demo video. (Video)" via Engadget

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

How Is LG Making the Capital Investment Gamble? "With falling TV panel demand and high fixed operation cost, Sharp accumulated drastic losses, pushing the company to the edge of bankruptcy. For the first time a larger substrate size did not automatically translate into business success. A valuable reminder that it is not only important what you do, but also when you do it. Today, several companies are talking about Gen 10 and Gen 10.5 LCD Fabs to gain a cost advantage in the display panel business. So it came as somewhat of a surprise when Digitimes quoted the Korea Money Today newspaper as a source saying that LG is thinking about the investment in a Gen 9 LCD Fab instead of a Gen 10, to compete with Chinese and Japanese competitors. While there is no way to verify this report, as LG is just not commenting on this speculation, it may just be an idea from the analyst instead of actual LG insider information. Or is it actually possible that LG would do such a thing?" via DisplayDaily

Why does digital signage have friction in buying and supply? "The goals of different business units that may be involved add complexity. Purchasing wants to minimize the capital outlay, information technologies want a solution that is RAS-able (reliable, available and scalable), facilities seek digital signage that will deliver improved performance of the location and a better visitor experience, and marketing wants better branding and merchandising at lower ongoing communications cost. The biases of the department that is taking the lead on the project can minimize the goals of other stakeholders, and coordinating this range of interests can be like herding cats. The sourcing agent (IT, facilities, purchasing, etc.) often see their role as concluding at vendor selection and contracting, whereas the end-user department (e.g., marketing, human resources, student communications) must live with the solution and vendor that are selected. Digital signage can deliver a wide range of benefits, but too often end-users do themselves a disservice in not defining the benefits they seek, in particular over the life of the investment where their growing application of the media can change as they become more familiar with its use." via Digital Signage Today

Planar Acquired by Leyard "Portland, OR-based Planar was to be acquired by a U.S. affiliate of the Chinese company Leyard (for a purchase price of $6.58 per share, or approximately $156.8 million). ...The direct-view LED video market is rife with competition from low-cost companies mostly based in Shenzhen, China. As I wrote earlier this year after the news broke of Samsung acquiring Yesco, smaller local companies such as YESCO have been particularly hit by such competition, while premium brands such as Daktronics, Barco, and Mitsubishi have been able to maintain revenues due to their reputation in the market. Samsung provides YESCO and its customers the credibility of a global multinational brand, after that acquisition. And now Planar, a sophisticated engineering company with well above average 4K LCD flat panels and other digital signage offerings, should do well with the deeper pockets and R&D of a larger company like Leyard– and the “synergies” we hear about in every acquisition press release are real here, and should make for intriguing developments from this new pacific rim entity." via AVNetwork

How Does UX Design for Very Large Touchscreens Differ from Mobile Screens? "Dorothy Shamonsky shares other findings based on her research experience with very large touch screens, "A large touchscreen can look beautiful and is enjoyable to interact with! At the same time, a large display will magnify a poor user experience. If you don’t like the way an interface looks at a small size, on a large screen it will be more offensive. Everything about the user experience is exaggerated at the large size—the beauty and the fun, as well as the effort and the frustration. Attempting to use touch on sites and apps that are were not designed for touch is, if nothing else, boring. Creating compelling touch interaction requires an understanding of the familiar gestures and how to use them appropriately. Use simple and clear visual and aural feedback to create a sense of tactile feedback. Tune into the joy of a good user experience."" via Nielsen Norman Group

What did you think about today's news? Leave a comment here and share your thoughts.

Friday
Aug142015

Display Industry Technology News Roundup 8.14.2015

Image via Google / Project Jacquard

Google and Levi's Team Up For Touch-Screen Enabled Clothing "Google and Levi Strauss have teamed up for a new project called Project Jacquard, named after a Frenchman who has invented a type of loom. This new initiative will be designed and spearheaded by a small Google team called Advanced Technology and Projects (ATAP) and is taking touch screen to another level by developing touch screen enabled clothes. The touch controls will weave "interactive" textiles right into your clothes, giving any garment the ability to communicate with other gadgets and operate just like a touch screen device. “We are enabling interactive textiles,” the ATAP's own Emre Karagozler stated as part of their announcement. “We do it by weaving conductive threads into fabric.” “It is stretchable; it is washable,” he added. “It is just like normal fabric.”" via Shalom Life

How recycling LCD screens could solve rare metal shortage "The team from the School of Environment of Tsinghua University in Beijing tested 18 methods for removing indium from discarded LCD screens and displays. The methods involved crushing and grinding the LCD glass into particles less than 75 micrometres in size. The researchers then soaked the particles in a sulphuric acid solution at a temperature of 50 ºC. ...With the electronics industry selling millions of gadgets equipped with LCD screens, displays and panels of various sizes every year, there could easily be supply problems within the next 20 years if a sustainable way of indium recycling is not developed, some estimates suggest." via E&T Magazine

LG Display shows off press-on 'wallpaper' TV under 1mm thick "The 55-inch OLED (organic light-emitting diode) display weighs 1.9 kilograms and is less than a millimeter thick. Thanks to a magnetic mat that sits behind it on the wall, the TV can be stuck to a wall. To remove the display from the wall, you peel the screen off the mat. The unveiling was part of a broader announcement by LG Display to showcase its plans for the future. The company said its display strategy will center on OLED technology." via CNET

"Always-on" Color Memory LCD is Ideal Graphic Display for Wearable Products "Sharp Microelectronics of the Americas (SMA) has unveiled its 1.33-inch (diagonal) Color Memory LCD graphics display. The 8-color LCD module has ultra-low power consumption, enabling longer time between recharges for small-display products with a battery. It also enables designers to meet the growing demand for "always-on" devices – e.g., products such as smartwatches that show a full array of data at a glance without need to "fire-up" the device. The high-resolution display (LS013B7DH06) delivers smooth graphics and simple video capability, thus showcasing richer content than many cholesteric, electrophoretic, and other bi-stable, "e-ink" type display solutions – all with lower energy requirements. Transmissivity allows addition of a backlight for visibility in low ambient light." via PR Newswire

Sharp to Explore Options for LCD Panel Business "Sharp Corp. said it would seek external help to prop up its LCD panel-making business and plans to quit selling televisions in the U.S. and much of the rest of North and South America, as the electronics company steps up its turnaround plan aimed at ending steep losses. ...In withdrawing from the TV business in the Americas, Sharp will sell much of its North and South America TV operations, with the exception of Brazil, to Hisense Co., a Chinese manufacturer. Sharp had a 4.6% share in the North America TV market, far behind market leader Samsung’s 35.1%, according to research company IHS." via WSJ

Samsung creates "transparent" truck display "When driving behind big semi-trailers, people regularly take risks overtaking them because they often have to first move out from behind the truck to see if the road ahead is clear before passing. This is particularly dangerous on single-lane highways because such a maneuver can mean driving into the path of oncoming traffic. Now Samsung Electronics has come up with a way to help reduce this problem by mounting cameras on the front of a truck and large screens on the rear to display to following drivers a clear view of the road ahead. Like the See-Through System we wrote about in 2013, the prototype video system on "Safety Truck" comprises a front-mounted camera to capture view of the road ahead of the truck. Rather than wirelessly send a live feed to a transparent LCD screen installed in a trailing driver's car, Samsung's solution transmits a continuous view of the road in front of the truck to exterior monitors mounted on the rear. (Video)" via Gizmag

Shape-shifting display projects objects out of TV screens using ultrasound levitation "The shape-changing display breakthrough is part of the Generic, Highly-Organic Shape-Changing Interfaces (GHOST) project and is the product of three years of research by the University of Copenhagen, the University of Bristol, Lancaster University and Eindhoven University of Technology. As glass cannot be bent as it will break, the researchers instead made a flatscreen display out of Lycra, which can be deformed at will. When a finger presses in on the display, a camera captures 3D depth data of the position and pressure of the finger on the screen. The researchers have developed computer algorithms that are able to detect and understand the depth information from the screens when a hand pulls at the display, as opposed to a glass screen display like an iPad, which has technology that only detects the limited area of a fingertip pressing on the glass in 2D." via International Business Times

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Researchers develop the first skin-like flexible display "A research team from the University of Central Florida, led by Professor Debashis Chanda, has developed the first-ever skin-like colour display, which is thin and flexible enough to be used alongside fabrics. The research team’s technique could open the door to thin, flexible, full-color displays that could be built into plastics and synthetic fabrics. The technology is only a few micrometres (um) thick. That is considerably smaller than a human hair, which is typically around 0.1mm thick." via Android Authority

Samsung Display Introduces First Mirror and Transparent OLED Display Panels "The new Samsung Display OLED panel technology provides a digital viewing platform for making the consumer purchasing experience more visually engaging. When Samsung’s OLED display technology is integrated with Intel® Real Sense™ technology, a visually compelling, interactive closet or “self-modeling” wardrobe is created that can enable consumers to virtually “see” clothes or other retail items from an extremely realistic, customized perspective. Together, the two technologies create a “virtual fitting room” that will be used to help consumers vividly see themselves wearing clothing apparel, shoes or jewelry that they might wish to buy. Once retailers like Chow Sang Sang adopt the combined Samsung-Intel “personalization” virtual imaging solution, consumers will be able to go to leading stores around the world to see retail items in ways that will greatly enhance point-of-purchase shopping as we know it today." via BusinessWire

How the world’s first white laser could revolutionize lighting and display tech "Incandescent bulbs have given way to CFL and LEDs, but these lighting technologies may be destined for extinction as well. A team of scientists at Arizona State University have developed a laser that can produce pure white light that is brighter and more efficient than even the best LEDs. Technically, the laser itself isn’t white from the start, but the clever use of nanomaterials allows three colored beams to become one white beam. Lasers have always had appeal for lighting technology as they’re very bright, work over long distances, and have high efficiency. The problem has always been that lasers can’t be white. This work builds on a laser created in 2011 at Sandia National Laboratories. However, that was merely a proof of concept, not a functional device. The ASU team’s white laser produces enough light that it’s visible to the human eye. That’s a step in the right direction." via ExtremeTech

E-paper display gives payment cards a changing security code "Using payment cards with an embedded chip makes payments more secure in physical stores, but it's still relatively easy for criminals to copy card details and use them online. Oberthur's Motion Code technology replaces the printed 3-digit CVV (Card Verification Value) code, usually found on the back of the card, with a small screen, where the code changes periodically. Today, any criminal who has seen a card or overheard the owner dictating the CVV code can make an unauthorized purchase online or by phone. With Motion Code, because the CVV changes from time to time, the time a fraudster has to act is reduced." via Computerworld

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

LG scales up In-Cell technology for thinner touchscreen laptop displays "With the launch of Windows 8 and its awful Start screen interface, we also got an influx of touch-enabled laptops and convertibles. It was a nice feature you could happily ignore if you so wished, but it does add a little extra bulk to the display because a touchscreen requires a touch layer in the panel. However, LG is about to fix that by scaling up the touchscreen tech used in its smartphones. The technology in question is called Advanced In-Cell Touch (AIT). What it does is remove the need for a separate touch layer by integrating the touch sensor directly into the LCD panel. You no longer need to add the touch panel on top of the LCD, it instead comes as standard and reduces the thickness (by 1mm) and weight (by 200 grams) of the finished display." via Geek

Apple Watch Sapphire vs Glass Display "The world’s best [and most expensive] watches all have a sapphire crystal because sapphire is incredibly hard, making them extremely scratch resistant and almost scratch proof under normal use. But sapphire is fairly expensive, so most watches instead have a glass crystal, which isn’t as hard or scratch resistant as sapphire, but still holds up pretty well. But is there a visual difference between a watch that uses sapphire versus glass? If you were to hold up two identical watches side-by-side, the one with a glass crystal would be about 20 percent brighter than the one with sapphire (due to fundamental principles of optics that reduce its light transmission), so it appears somewhat darker and duller, particularly because the light has to pass through the crystal twice. There are some new upcoming advanced technologies that can make significant improvements on this issue that we’ll mention below. The above discussion is for traditional watches, which work by reflecting ambient light off the watch face that lies below the crystal. On the other hand, the visual consequences from using sapphire and glass are considerably greater when they are used on displays, including smartphones and smart watches, because minimizing screen reflections is especially important for displays, and sapphire has almost double (191%) the Reflectance of glass, which we consider next…" via DisplayMate

Researchers' 'Fairy Lights' Promise Floating, Touchable Laser Displays "As the researchers explain in their paper, an earlier incarnation of the technology relied on a nanosecond laser to create bursts of plasma that, when fired in rapid succession, can effectively act as a floating display. The problem, as IEEE Spectrum notes, is that while those plasma bursts can deliver tactile feedback, they can also burn you. The latest version developed by the researchers, on the other hand, uses a femtosecond laser to create a similar type of floating plasma display that's safe to touch. And while it won't burn you, the plasma will apparently still generate "shock waves" that will let you feel an "impulse on the finger as if the light has physical substance."" via Tech Times

Could this could be the big OLED breakthrough we've been waiting for? "But a joint venture by Fujifilm and nano-electronics research institute, imec, might well have turned up a more cost-effective method of producing high-resolution, big-screen OLED displays. This pairing produced photoresist technology for organic semiconductors back in 2013 and they have recently demoed full-colour OLEDs using that photoresist tech. It's a different method of producing OLED displays compared with Samsung's Full Metal Masking (FMM) tech and LG's white OLED (WOLED) with colour filters. The research is most encouraging though because it uses an OLED patterning setup that uses standard lithography tools in its manufacture." via TechRadar

Facebook’s Oculus to Pay About $60 Million for Gesture-Control Firm Pebbles "Pebbles has recently integrated its technology into the virtual-reality headset developed by Facebook’s Oculus VR, enabling users to interact with the device via hand and finger gestures. Unlike competing gesture-identification technologies, Pebbles’ enables users to see images of their own arms and hands in their virtual-reality display. In some other technologies, users can’t “see” their bodies, or only see generic digitally-generated versions. Pebbles’ technology can show unique features like clothing, scars or items held in one’s hand." via WSJ

Apple might be bringing fighter-jet technology to car windshields "The world’s most valuable company is “very likely” working on a 27- to 50-inch head-up display, a technology most famously used by jet pilots, that could project vivid icons and information for drivers while on the road, a tech analyst with Global Equities Research said Thursday morning. The curved-glass screen could also be wired with sensors and “may be completely gesture-controlled,” a stealth project that analyst Trip Chowdhry said could be Apple’s “next generation” device, after gadgets such as the iPhone, iPad and Apple Watch." via Washington Post

Switchable holographic pixel elements for 3D displays "Many so-called 3D display technologies rely on optical tricks, such as stereoscopy and reflective prisms, to give the illusion of depth. However, holograms can record, and display, all the information of the original light field using optical interference so that there is no visible difference between the optical information in the displayed image and the real-world scene. Hence the display is a true 3D view into the world (see Figure 1).1 Such an ideal 3D holographic display requires an array of multifunctional, highly dense pixels working in unison to encode phase, amplitude, wavelength, and polarization information yet with dimensions similar to visible wavelengths." via SPIE

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

Are quantum dots ‘ready for prime time’? Analyst says yes "Until OLEDs are ready, says Yole, “QD-LCD technology will have a unique window of opportunity to try to close enough of the performance gap such that the majority of consumers will not be able to perceive the difference between the two technologies so price would become the driving factor in the purchasing decision.” Under this scenario, the analyst believes that QD-LCD could establish itself as the dominant technology while struggling OLEDs “would be cornered into the high end of the market.” Yole acknowledges that OLED-based displays potentially offer more opportunities for differentiation but the analyst notes, “OLED proponents need to invest massively and still have to resolve manufacturing yield issues. For tier-2 LCD panel makers who cannot invest in OLED, Quantum Dots offer an opportunity to boost LCD performance without imposing additional CAPEX on their fabs.” At this year’s Consumer Electronics show, as optics.org reported, no fewer than seven leading TV OEMs including Samsung and LG demonstrated QD-LCD TVs." via Optics.org

The impact of consumer demand for cutting-edge display technology on the gases market "Currently about 20% of smartphones – the ones with lower resolution displays – use a-Si display process. Higher resolution devices and new effects such as curved displays require higher performance transistors and improvements in electron mobility. This can be achieved by switching from amorphous silicon (a-Si) transistors to low temperature polysilicon (LTPS) or metal oxide (MO), also known as transparent amorphous oxide semiconductor (TAOS). LTPS is used in about 44% of high-end LCD smart- phone displays as it has the highest performance. Due to its higher costs and scalability limitations, LTPS is less suited for large screen displays. Small displays with very high pixel resolution are produced with LTPS. High-definition large displays can be made using MO. Metal oxide semiconductors can remain in an active state longer than traditional LCD and can cut power consumption by up to 90%, which is a huge benefit." via Solid State Technology

Huge 8K panels shipping from China this year "The new screens are rocking Advanced Super Dimension Shift (ADSDS) panel technology, which sounds like some serious quantum physics kinda extra-dimensional voodoo, but is actually another liquid crystal tech allowing the wee molecules to be rotated in a more efficient way. The advantages of this technology is it's capable of dealing with incredibly high resolutions (lucky as we're talking about 7680x4320 here…) with low levels of power consumption. Another bonus of ADSDS - and why it's part of these big screens - is that it has a seriously wide viewing angle of 178º. OLED on the other hand is still sat at a slightly more limited 160º viewing angle." via TechRadar

Laser-projected mouse melds trackpad, touchscreen "ODiN is the world's first laser projection mouse, claims its creator, Taiwanese company Serafim Technologies. The device was shown off on Monday, a day before the Computex trade show in Taipei. Users who buy the product will receive a small projector that can sit on top of a table, and connects to a PC via its USB port. It works by displaying a virtual trackpad on a hard surface like a table. For users, this means they'll essentially see a small box, made out of red light, with the right and left click buttons projected at the top of the trackpad. To read the gestures, the projector has built-in sensors that can track a user's finger movements over the trackpad. The company created the product as a way to meld mouse and touchscreen functions, said Serafim's CEO GZ Chen." via Computerworld

Austrian Company Invents a Touch Screen for the Visually Impaired "Here's the gist of it: the tablet is just like an e-reader but instead of a traditional LCD display, it has one that's made out of a smart liquid that forms bubbles on the surface. When the software recognizes text from either a USB drive or webpage, it converts them into Braille letters. "We call the materials 'tixels' from 'tactile pixels' because we do not use any mechanical elements to trigger the dots," Kristina Tsvetanova, Blitab's founder, says. (Video)" via Fast Company

Everything you can do with the Force Touch Display on Apple Watch "Force Touch adds a new dimension to the watch’s user interface, a necessary one given the device’s small screen. The Retina display’s electrodes can sense when you’re tapping the screen to select an option and when you’re forcefully pressing down to bring up a secondary menu. Apple calls Force Touch the “most significant new sensing capability since Multi-Touch,” the touchscreen tech that transformed the way we interact with phones (and everything else). Apple Watch and the trackpads on the new 12-inch MacBook and revamped 13-inch Retina MacBook Pro have the new Force Touch gesture baked in, and Apple is reportedly planning to add it to the next generation of iPhones." via Macworld

Google's new finger control technology is straight out of a science fiction movie "Google showcased an early prototype of the Soli technology on stage with impressive results. Google showed how precise, fine motor skills, such as pinching the thumb and index finger, or rubbing them together at different speeds, could be used to control all sorts of things without actually touching them. In one demo, the founder of Google's Project Soli, Ivan Poupyrev, kicked a virtual soccer ball by flicking at the screen. In another, he changed the hours on a clock by turning an imaginary dial with his fingers, and then changed the minutes by raising his hands further away from the screen and doing it again." via Business Insider

Most Colorful Color Display Yet Eliminates Need For Backlight "The new display is the latest version of Mirasol, an established commercial product from Qualcomm. Instead of emitting their own light, the Mirasol displays basically use a sophisticated mirror to selectively reflect light from the environment. Researchers report in a paper published in the journal Optica that they have solved many of the biggest problems that the technology has encountered so far, decreasing the display's power demands and making it easy on the eyes in bright environments. "No more squinting at a hard-to-read display outdoors where we spend much of our time," lead author John Hong, a researcher with Qualcomm MEMS Technologies Inc., said in a statement. "We ultimately hope to create a paper-like viewing experience, which is probably the best display experience that one can expect, with only the light behind you shining on the page."" via Tech Times

Nanostructure design enables pixels to produce two different colors "The main challenge to overcome was the mixing of colors between polarizations, a phenomenon known as cross-talk. Goh and Yang trialed two aluminum nanostructures as pixel arrays: ellipses and two squares separated by a very small space (known as coupled nanosquare dimers). Each pixel arrangement had its own pros and cons. While the ellipses offered a broader color range and were easier to pattern than the nanosquare dimers, they also exhibited a slightly higher cross-talk. In contrast, the coupled nanosquare dimers had a lower cross-talk but suffered from a very narrow color range. Because of their lower cross-talk, the coupled nanosquare dimers were deemed better candidates for encoding two overlaid images on the same area that could be viewed by using different incident polarizations." via Phys.org

The Days of Squinting at Laptops in the Sun Are Almost Over "It’s a relatively new phenomenon. Back in the day—before 2006, according to this fine historical document—laptops had those squishy LCD screens that would leave psychedelic trails when you’d run your finger over them. Beyond that trippy side effect, the screens had one big benefit: Matte that were seemingly resistant to glare. Those days are gone. Pick up any laptop and odds are it’s got a glossy screen. Apple dropped the matte screen option from the MacBook Pro in 2013, and people were none too pleased. But according to Dr. Raymond Soneira, founder and president of display-testing and -calibration company DisplayMate Technologies, matte screens have their own problems." via Wired

Fiber-like light-emitting diodes for wearable displays "Professor Kyung-Cheol Choi and his research team from the School of Electrical Engineering at KAIST have developed fiber-like light-emitting diodes (LEDs), which can be applied in wearable displays. The research findings were published online in the July 14th issue of Advanced Electronic Materials. Traditional wearable displays were manufactured on a hard substrate, which was later attached to the surface of clothes. This technique had limited applications for wearable displays because they were inflexible and ignored the characteristics of fabric. To solve this problem, the research team discarded the notion of creating light-emitting diode displays on a plane. Instead, they focused on fibers, a component of fabrics, and developed a fiber-like LED that shared the characteristics of both fabrics and displays." via Printed Electronics World

Forever 21's 'Thread Screen' displays Instagram pics using fabric "Most companies seek out the latest displays for high-tech billboards, but Forever 21 has decided to take a different route for this particular Instagram project. For the past year-and-a-half, the folks at connected hardware maker Breakfast New York have been building a "Thread Screen" for the company. It's called that, because well, it's literally a screen made of 6,400 mechanical spools of multicolored threaded fabric. Those spools have five-and-a-half feet of fabric each, divided into 36 colors that transition every inch-and-a-half. They move like a conveyor belt, stopping at the right hue based on what picture they're displaying -- an infrared even scans the finished product to make sure each spool is displaying the correct color." via Engadget

What did you think about today's news? Leave a comment here and share your thoughts.

Tuesday
Sep302014

Display Technology News Roundup 9.30.2014

Image via Flickr / That Hartford Guy

This 1980s General Motors Touchscreen Was Decades Ahead Of Its Time "For most drivers, the idea of a touchscreen that controls all of a car's functions is sci-fi that only recently became reality. However, in 1989 General Motors equipped its Oldsmobile Toronado Trofeo with a touchscreen system that was decades ahead of its time. Called the Visual Information Center (VIC), the touchscreen gave the driver access to everything from the radio to engine management data. (Video)" via Business Insider

How to build a real-time holographic display using doped liquid crystals "There are two common types of 3D display based on the principles of stereopsis (perception of depth). One exploits binocular parallax (the displacement in the apparent position of an object viewed along two lines of site), and the other makes use of light-field reconstruction. However, the ultimate goal is holographic display, which provides the most realistic 3D images of objects or scenes. This is because it can reconstruct both intensity and phase information, enabling the perception of light as it would actually be scattered by a real object, without the observer needing special eyewear. ...However, to show real-time, dynamic 3D images, there is a limited choice of suitable photorefractive materials with the necessary fast response and high modulation index to achieve a reasonable diffraction efficiency. This presents challenges in the choice of materials, devices, and system structures. Here we present a real-time holographic display featuring a liquid crystal (LC) doped with an azo (synthetic) dye. This material enables a video-rate display, since we can refresh each hologram on the order of several milliseconds." via SPIE

How are color-changing displays inspired by squids advancing LCD tech? "Scientists have long marveled at the squid's ability to sense the color of its surroundings, and then instantaneously change its own skin coloring in order to blend in. To that end, a number of projects have attempted to create man-made materials that are similarly able to change color on demand. One of the latest studies, being led by associate professor Stephan Link at Rice University, may ultimately result in improved LCD displays. The technology developed by the team currently consists of a prototype full-color display, which incorporates five-micron-square pixels made up of arrays of tiny aluminum nanorods to produce vivid red, green and blue-based colors. By electronically tuning both the length of the nanorods and the spacing between them, it's possible to alter the manner in which they reflect light – this in turn changes each pixel's perceived color." via Gizmag

Is the iPhone 6 Plus Display the Best Ever? "In its latest series of lab tests and measurements, DisplayMate called the iPhone 6 Plus the "best performing smartphone LCD display that we have ever tested." Specifically, the new 5.5-inch iPhone reached or broke records in a variety of areas, including highest peak brightness, lowest screen reflectance, highest contrast ratio, highest contrast rating in ambient light, most accurate intensity scale and gamma and most accurate image contrast. ...President Raymond Soneira wrote of the iPhone 6 Plus. "The iPhone 6 Plus is only the second Smartphone display (LCD or OLED) to ever get all Green (Very Good to Excellent) Ratings in all test and measurement categories (except for Brightness variation with Viewing Angle, which is the case for all LCDs) since we started the Display Technology Shoot-Out article series in 2006, an impressive achievement for a display. The iPhone 6 Plus has raised the bar for top LCD display performance up by a notch."" via CNET

Everything you ever wanted to know about display screen technology "On a glossier screen, less diffusion takes place, so the image appears sharper. Glossy displays may also be coated with an anti-glare finish to reduce distracting reflections; this means dark areas aren’t illuminated by ambient light as much as they would be with a matte screen, so the contrast of the screen appears to be greater. Choosing a screen type is a matter of personal choice as much as it is influenced by your environment and/or lighting conditions. As a rule of thumb, a matte screen makes sense for regular office work, or for a laptop that you intend to use while out and about; for games and movies, the vibrant colour and punchy contrast of a glossy screen may be more important – especially if the room lights will be darker." via PC & Tech Authority

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Blue phosporescent OLED lifetime increased by 10X "In a step that could lead to longer battery life in smartphones and lower power consumption for large-screen televisions, researchers at the University of Michigan have extended the lifetime of blue organic light emitting diodes by a factor of 10. Blue OLEDs are one of a trio of colors used in OLED displays such as smartphone screens and high-end TVs. The improvement means that the efficiencies of blue OLEDs in these devices could jump from about 5 percent to 20 percent or better in the near future. ...In collaboration with researchers at Universal Display Corp. in 2008, Forrest's group proposed an explanation for why blue PHOLEDs' lives are short. The team showed that the high energies required to produce blue light are more damaging when the brightness is increased to levels needed for displays or lighting. This is because a concentration of energy on one molecule can combine with that on a neighbor, and the total energy is enough to break up one of the molecules. It's less of a problem in green- and red-emitting PHOLEDs because it takes lower energies to make these colors of light." via University of Michigan

Is the display industry headed for a boom? "Foreign institutional investment analysts yesterday expressed an upbeat outlook on the global display panel sector, expecting the arrival of a rare boom unseen in recent years in the latter half of this year. According to James Kim, an analyst at Nomura Securities, expected windfall for the sector in the latter half of this year is attributed to expected constraints in production capacity that may persist for the next few years, and anticipated surge in demand for larger-sized LCD TV sets. Kim noted that it is difficult for larger-sized LCD display panel makers to initiate production capacity expansion currently amid an ongoing transition towards producing OLED panels. In addition, numerous panel makers have sustained tremendous losses since 2010, following a period of oversupply in the global markets, leaving them with little room to increase capital expenditure." via The China Post

Sharp aims to mass-produce new generation of display panels by 2017 "Qualcomm and Sharp said the new type of panel, called MEMS-IGZO after their respective display technologies, uses less energy and can withstand harsher temperatures than the liquid crystal displays (LCD) used in most smartphones and tablets. "LCD is really hitting its limits in a lot of things. We can go brighter and this is the first generation of this technology," said Greg Heinzinger, senior vice president of Qualcomm's technology licensing division and president of Pixtronix, at a briefing at Sharp's Tokyo office on Friday. ...Sharp said it will market the new technology to automakers, and makers of industrial devices, smartphones and tablets, and aims to start mass-production in 2017." via The Star

Are touchscreens going to be obsolete? "Although it’s too early to predict the end of an era for touch screens, it was interesting to hear Tetsuya Hayashi, one of the keynote speakers at Touch Taiwan, talking about development activities around post-touch screen technology in Japan. Hayashi, deputy director of Nikkei BP ICT Innovation Research Institute, illustrated the future of display technology as “ambient,” “free-form,” and “wearable.” Images, he foresaw, will be projected on any surface or in the air, instead of being constrained to a rigid, bulky box." via EE Times

Intel demonstrates a laptop with a second E Ink screen on the lid "The Asus Taichi line of notebooks feature screens on both sides of the lid — so when the lid is closed you find yourself holding a tablet. When it’s open, you have a laptop with a screen facing you and a second screen facing away. Now Intel is showing off a prototype of a laptop with a similar layout. There’s a screen on either side of the lid. The difference is the one that’s on top of the lid is a small, low power E Ink display. (Video)" via Liliputing

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Could Display Technologies Provide Camoflouge and Other Military Technologies? "Digital electronic display technologies, such as light emitting diode (LED), liquid crystal display (LCD), plasma, and digital projection, have advanced and proliferated rapidly in recent years. This has caused unit cost to decrease and quality and capability to increase. These technologies are no longer just for watching television or working on a computer. Massive LED screens are common on digital billboards, while nearly half of all Americans carry high resolution displays in their pockets in the form of smartphones. Displays are even beginning to break out of their traditional rectangular shape. LEDs can now be manufactured so that panels can be flexibly conformed to curved or irregular surfaces. Projection mapping techniques enable projectors to display images on three dimensional surfaces. All of these technologies have the potential to revolutionize the way the Navy operates for pennies on the dollar." via CIMSEC

How does an optical engine remove sharp pixels in displays? "Lemoptix has designed what it calls the world's smallest optical engine—25mm x 25mm x 12mm—and has worked to "despeckle" displays using proprietary technology. Without despeckling, a laser-driven display looks pixelised, with overly sharp pixels surrounded by obvious circles of black. Lemoptix has not revealed all the details of its despeckling algorithm, but it did reveal enough to win the Photonics West best paper award. In addition, Lemoptix has been to solve application problems to make its Hamamatsu modules easier for designers to use. For instance, it has built demonstration applications for heads-up displays on automobile windshields that work even in the brightest ambient light. It has also built 3D scanning solutions using structured light, embedded projectors for smartphones, and wearable displays for augmented-reality smart glasses." via EET India

TinyScreen thumb-sized display supports full color "Often the size of the screen controls how large your project is overall, and if you want small, TinyScreen is the ticket. TinyScreen is the size of your thumb and still supports full color. There are a myriad of uses for TinyScreen from homemade wearables to smart glasses to just about anything that can benefit from a small display. The screen uses OLED technology with 96 x 96 resolution, 16-bit color, and is designed to show data from the TinyDuino platform." via SlashGear

A 3D Display You Can Manipulate and Remotely Control "inForm is essentially a field of embedded pins that rise and fall independently to form shapes using information relayed by a computer. The creators of inForm describe it as a Dynamic Shape Display that can display real-time 3D information as well as receive input from users. Developed by MIT Media Lab‘s Tangible Media Group, it is able to display 3D information in real-time and in a more accurate and interactive manner compared to the flat rendering often created by computer user interface." via psfk

What's the difference between digital signage and touchscreen kiosks? "The most important difference between digital signage and touchscreen kiosks can be summed up in a single word: interaction. Enticing a visitor to interact with your message is a universal business goal. A touchscreen kiosk will provide you with all that digital signage can offer, but with an added layer of engagement. … Touchscreen devices are typically more expensive than equivalent-size digital signage monitors. In addition, the deployment of an interactive touchscreen kiosk requires a more in-depth design and development phase, so the software pricing can also be higher." via Digital Signage Today

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

How Could Virtual Reality Displays Transform Education? Oculus VR Interview "We showed the folks from the Smithsonian, we showed folks from a number of different industries—the automobile industry, the architecture industry—we’ve shown people the latest prototype, and they’ve gotten incredibly excited about the visualization aspect. Imagine, you could scan in everything in the Smithsonian—they have 130 million objects. Let’s get 10 percent of them or 20 percent of them. You could put on a pair of … sunglasses, and with those sunglasses you could see those objects and you could look around and you could see it so well and so clearly, and it would track so perfectly that your brain would believe it was really right in front of you. The next step past that is when you have shared space, and not only do you believe that this object is right there in front of me, but I look around and I see other people just like we see each other now, and I really, truly believe that you’re right in front of me. We can look at each others’ eyes. If you look down at something, I can look down at the same time. And it’s every bit as good as this. And if we can make virtual reality every bit as good as real reality in terms of communications and the sense of shared presence with others, you can now educate people in virtual classrooms, you can now educate people with virtual objects, and we can all be in a classroom together [virtually], we can all be present, we can have relationships and communication that are just as good as the real classroom." via The Chronicle of Higher Education

The first functional graphene-based flexible display has been produced "Graphene has been called a “magical” material that may hold the key to better electronic gadgets, both when it comes to device durability but also electrical abilities, as various research teams are figuring new ways to put the astonishing material to good use. … Researchers from the Cambridge Graphene Center and Plastic Logic managed to build the first such product, a flexible display that could equip a variety of gadgets in the future. “The new prototype is an active matrix electrophoretic display, similar to the screens used in today’s e-readers, except it is made of flexible plastic instead of glass. In contrast to conventional displays, the pixel electronics, or backplane, of this display includes a solution-processed graphene electrode, which replaces the sputtered metal electrode layer within Plastic Logic’s conventional devices, bringing product and process benefits,” a University of Cambridge report says." (Video)” via BGR

How Does New Augmented Reality Industrial Display Hardhat Protect Workers? "The DAQRI Smart Helmet has a hands-free wearable HD display with fully transparent optics that provide always-on functionality readable in both low light and bright conditions. It is described as “an elegant fusion of the most sophisticated display and sensor hardware with next-generation computer vision.” ...The Smart Helmet’s ‘True 4D’ display will enable organizations to provide intuitive instructions to their workforce. This should ensure that workers understand processes more quickly, spend less time on each step, and make fewer errors. (Video)" via psfk

The Story of Pixel Density and Touch Interface "It’s clear that the reason Apple chose precise scaling factor has been driven by the intention to produce crisp design with no compromise on antialiased UI elements rendering. It is often seen when you have a lot of 1pt stroke line in your design. Apple thinks for the developers and for the consumers too. From its original iPhone inception, Apple has been adamantly guarding how its User Interface will be rendered on user devices. The original iPhone to its iPhone 4S had exactly the same effective resolution of 320pt by 480pt. We praised Apple’s UI workmanship and its call on attention to detail. There is an interesting case of iPhone 6+ where Apple choose not to continue with the pixel-perfect scaling tradition. Read it here: The Curious Case of iPhone 6+ 1080p Display" via Medium

Should Touchscreens Be Built Into Every Desktop Design? "Like tablets before them, the ergonomics of these hybrid gizmos demand UI conventions that depart from desktop layouts of similar screen size. The hybrids not only need big touch targets to accommodate clumsy fingers, but they also need controls and navigation conveniently placed where hands naturally come to rest. Designing for touch introduces elements of industrial design: physical comfort and ease are critical considerations. Unfortunately, the top-of-screen navigation and menus of traditional desktop layouts are outright hostile to hybrid ergonomics. Tried-and-true desktop conventions have to change to make room for fingers and thumbs. For now at least, the solution is not just a matter of designing separate interfaces for touch and non-touch gadgets. That won’t fly, because as designers (and especially web designers) we often don’t have enough information about the device. After poking at this problem for a few weeks, my conclusion is: every desktop UI should be designed for touch now. When any desktop machine could have a touch interface, we have to proceed as if they all do. Walk with me." via Global Moxie

What did you think about today's news? Leave a comment here and share your thoughts.

Wednesday
Sep032014

Display Technology News Roundup 9.3.2014

Image via Fast Company

Could displays correct your vision? "New technology under development at the University of California-Berkeley and MIT automatically corrects people's vision defects without glasses. Plug a glasses prescription into the new software, and the system calculates how to display the image so it won't look blurry. Basically, by adjusting the light from each pixel on a device and then passing it through a tiny mesh attached to a monitor or phone screen, the system personalizes the image so it's crystal clear." via Fast Company

How will liquid crystal displays help reach exaFLOP speeds? "The Optalysys Optical Solver Supercomputer will initially offer 9 petaflops of compute power, increasing to 17.1 exaflops by 2020. 40 gigaFlops demonstration uses 500x500 pixels working 20 times per second. Each pixel does the work of about 8000 floating point operations in each of the cycles. Speeding up 427 million times to 17.1 exaFLOPS can be done with 500,000 X 500,000 pixels and 8550 cycles per second. They can use multiple LCD displays. ...There was no need to drive the refresh rate up for human displays but there will be a need for optical computing. 4K monitors usually have 8.3 million pixels (3180X2160). Thirty six thousand 4K monitors would get to 500K X 500 K." via Next Big Future

Is quantum dot the next step in LCD TV evolution? "Some brands have adopted quantum dots in their products, such as Amazon’s Kindle Fire HDX tablet PC and Sony’s Triluminos TV in 2013. However, quantum dots must surmount some hurdles to achieve wide usage. The first is the issue of Cadimium, which most quantum dots contain, and which is a regulated substance due to enviromental concerns. The second is the high price of quantum dot materials. Quantum dot makers are working on solving these issues. For example, Nanoco has produced Cadmium-free quantum dot materials, and other makers have secured a temporary exemption for Cadmium in products with quantum dot-based displays imported into Europe. Regarding price, many materials and films makers are entering the market, especially from Korea such as Samsung, LG, Sangbo, LMS, Hanwha and SKC-Haas. Increased competition will likely help to lower prices in the near future." via ECN Mag

Will superconducting quantum dots make LCD displays more vibrant? "Eric Nelson, who is also behind the development of the technology, says that it is called quantum dot enhancement film (QDEF), which enhances the colors of LCD screens. Nelson explains that current technology consumes a lot of energy to display bright colors on the LCD screen. However, QD efficiently provides high-color display and consumes far less energy when compared to other technologies. ..."They sandwiched the QDs between two polymer films, with the QDs embedded in an epoxy glue. Coatings on the film provide further protection and enhance the viewing experience," per ACS." via Tech Times

Who made the world's first touch-sensitive LCD basketball court? "Nike has created this huge touch-sensitive LCD basketball court for a training session with Kobe Bryant. The court has built-in motion sensors that track every player's movements individually. It can also display training exercises for them to follow and show statistics on performance. (Video)" via Gizmodo

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Could this new type of heads-up display redefine the augmented reality experience? "Andrew Maimone’s device is called a Pinlight Display and he has been working on this device in collaboration with three researchers from the University of North Carolina and two from Nvidia Research. The Pinlight Display does not rely on standard optical components. Instead, it utilizes an array of “pinlights”, which are essentially bright dots. Maimone explains that “A transparent display panel is placed between the pinlights and the eye to modulate the light and form the perceived image.” He added that "Since the light rays that hit each display pixel come from the same direction, they appear in focus without the use of lenses." (Video)" via Mobile Commerce Press

Will Quantum Dots Dominate Displays? "The QD Vision approach adds quantum dots to strips of blue LED edge lights around an LCD panel. Some of this light is converted to red and green, which is mixed by a light guide to create a high-quality white backlight for the LCD panel’s color subpixels. The Nanosys/3M approach places the QDEF film over the back of the panel, and then a blue LED backlight is applied (typically through edge lighting and a light guide). Some of the blue light is converted in the film layer to red and green light before reaching a subpixel. A new, third, approach is being developed by a number of researchers. This involves putting the quantum dots directly on the blue LED chip. This can simplify the optical and light-management requirements, but it subjects the quantum-dot material to higher operating temperatures that can decrease performance." via IEEE Spectrum

LEDs Made From ‘Wonder Material’ Perovskite "A hybrid form of perovskite – the same type of material which has recently been found to make highly efficient solar cells that could one day replace silicon – has been used to make low-cost, easily manufactured LEDs, potentially opening up a wide range of commercial applications in future, such as flexible color displays. This particular class of semiconducting perovskites have generated excitement in the solar cell field over the past several years, after Professor Henry Snaith’s group at Oxford University found them to be remarkably efficient at converting light to electricity. In just two short years, perovskite-based solar cells have reached efficiencies of nearly 20%, a level which took conventional silicon-based solar cells 20 years to reach." via redOrbit

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

TouchPico projector creates touchscreens anywhere. "The secret to the touch interaction is in the TouchPico stylus. The built-in infrared camera determines the touchscreen coordinates and relays that information to the projector at up to 40 frames per second. That’s fast enough to play some Fruit Ninja and score. This definitely takes interaction above and beyond the combination of laptop, projector and some gyroscopic mouse. The TouchPico can definitely up your professional game, too" via TechnologyTell

Can new automotive heads-up display be alternative to smartphone while driving? "Navdy wants to change the way we interact with our connected devices while driving altogether. It’s a device that can be mounted on any car’s dashboard and it provides a high-resolution heads-up display that helps you see the road behind it. Simpson says the technology is the same used by pilots when they land an airplane. By seeing what’s behind the display and still receiving information from it, the driver doesn’t take his or her eyes off the road, which should decrease the chances of an accident according to the NHTSA, which released guidelines last year to minimize in-driving distractions such as manual text entry on navigation systems." via TechCrunch

Spheree lets you watch animated images in full 3D "Spheree is the work of a team of researchers working together from the University of São Paulo, Brazil, and the University of British Columbia, Canada, and it's mesmerising to behold. Like its name suggests, it's in the shape of a translucent sphere; inside, the viewer can see animations and images that appear to float in the centre; as the viewer moves around, they can see other sides of the object as their perspective changes. And it's all based on optical illusion. Packed inside the Spheree are multiple mini-projectors, which shine the images onto the interior surface of the sphere. Special software designed by the team blends the projector images together for a single, seamless image." via CNET

5 Things CIOs Should Know About Digital Signage "4. Networks will be put to the test. An increasing percentage of digital signage content will be in ultra-high-definition (UHD), which could swamp an organization’s network bandwidth, particularly if the content is pulled from the cloud instead of being stored and played locally, says IHS analyst Sanju Khatri. Digital signage using UHD displays first appeared at McCarran International Airport in Las Vegas in 2013, and IHS predicts huge growth in UHD displays in the next few years." via CIO

Creating Next-Generation Holograms "Researchers from the University of Cambridge have developed a new method for making multi-colored holograms from a thin film of silver nanoparticles, which could greatly increase the storage capabilities of typical optical storage devices. ...Using a single thin layer of silver, Montelongo and his colleagues patterned colorful holograms containing 16 million nanoparticles per square millimeter. Each nanoparticle, approximately 1,000 times smaller than the width of a human hair, scatters light into different colors depending on its particular size and shape. The scattered light from each of the nanoparticles interacts and combines with all of the others to produce an image. The device can display different images when illuminated with a different color light, a property not seen before in a device of this type. Furthermore, when multiple light sources are shone simultaneously, a multi-color image is projected." via Controlled Environments

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

What does automotive HMI technology have in store for the near future? "There is much potential for in-car HMI, but we have yet to see a similar revolution in the UX and UI of the automotive industry. ...However, in the haste to get on-trend, car manufacturers have simply used screens to replicate what has been before, rather than taking an empathetic, intelligent approach. Skeuomorphism abounds, where physical buttons are replaced with look-alikes on a screen — familiarity is retained, but at the expense of tactile feedback. Current touchscreen HMIs are often simply ill-considered re-appropriated solutions developed for completely different contexts (which we will discuss later in the series)." via ITProPortal

Is 4K the next flat panel display revolution, or another gimmick? "While 3D may not have stuck around, now every film is projected in 4K. However, there are circumstances when the benefit of 4K can’t be fully utilized, and it has to do with viewing distance. To perceive the full benefit of a 4K resolution, the human eye needs to be at a certain distance from the screen, depending on the size of the screen. This is also true for 1080p over 720p. "In general, from an integrators perspective, we try to look at what the viewing distance or the vieiwing angle of the folks involved might be," says Mike Hancock, Vice President at MechDyne Corporation. "Flat panels, except for some of the really extreme large-sized ones, really only work good for rooms that are less than 20 feet."" via CorporateTechDecisions

Foldable, Bendable And Bright: The Future Of Displays "Micro transfer printing (µTP) is a method of, essentially, using a type of rubber stamp to pick up very thin strips of semiconductor material (as the “ink”) and place it somewhere else by “stamping” it. The advantage of this technique is that it allows you to put high performance semiconductor elements (such as gallium nitride (GaN)) onto substrates where they wouldn’t normally be compatible (like plastic). And you can place the stamp over and over thereby creating large areas of arbitrary shapes out of otherwise small, high performance components—in ways that are impossible or infeasible with traditional semiconductor manufacturing processes. Prof. John Rogers describes in the Science paper making displays out of micro-LEDs using transfer printing. The micro-LED displays had great battery life, were very bright and, due to the nature of µTP, could be made at low cost. The trifecta of low cost, good battery life and a scalable manufacturing platform while maintaining excellent performance comprises the display industry equivalent of winning eight gold medals in the same Olympic games. It’s a big deal, and Rogers may have delivered it." via Forbes

New automotive head-up display could help drivers avoid collisions in fog "The head-up display (HUD) is the work of Professor Vassilis Charissis and his team, based in the Virtual Reality and Simulation Laboratory (VRS Lab) within the School of Engineering and Built Environment. The display has been developed and evaluated in a 3D driving simulator, which allows drivers to navigate a perfectly recreated stretch of the M8, M74 and M80 in a choice of conditions. One of the options lets the driver tackle the motorways in dense fog, before giving them the chance to drive the same stretch again using the head-up display. When initiated, the windscreen of the car highlights where other vehicles are on the motorway within a 400-metre range and even lets the driver know when it’s safe to change lanes." via FleetNews

A Vision of Future Displays "According to Brown Elliott, Samsung has not used even half the IP they have developed and will need some time to roll out what is already possible for the next few years. But Samsung’s loss could be someone’s gain. As I said in the beginning, Brown Elliott has a vision of the display industry in 10-15 years. The way she sees it, light field displays and light field imaging devices will merge in this time period. That means a clear sheet of glass (or plastic) will be both camera and display. With a light field display, a lens is placed above a number of pixels that can provide “views” from many directions. Current light field displays and imagers are always pixel limited so the resulting images are typically 50-200x lower resolution than the underlying display resolution." via Display Central

What did you think about today's news? Leave a comment here and share your thoughts.

Wednesday
Apr092014

Display Technology News Roundup 4.9.2014

Image via Spike Aerospace

Will digital signage replace plane windows? "Spike Aerospace, a Boston engineering firm that’s developing a small supersonic jet, recently caused a stir when it announced its plane wouldn’t have any windows in the passenger cabin. Instead, thin screens installed on the walls of the aircraft would display live views captured by cameras mounted outside. ...The cockpit, of course, will still have a real-life view, but Kachoria predicted windowless cabins would be the norm within 20 years on small planes like the one his company is working on." via NBC News

How will flexible electronics revolutionize user interface displays and everything else? "With RFID, you have to embed electronics into your travel card or keyfob or whatever – with Touchcode, from T+Ink, you just use conductive ink, which is cheaper, thinner and more flexible, to transmit information to the reader. The best thing about this system is that the reader can be found in any modern mobile device: the screen. Capacitive touchscreens usually work because of the conductivity in your finger; here, they just read the conductive pattern of the ink on the smart card, smart packaging or what have you. In this example, holding the promotional “Cars 2″ card over the suitable app brings up an image of the relevant car. It’s a darn sight easier to use – and more pleasing to the eye – than a QR code that needs to be held in front of the phone’s camera." via Gigaom

Are OLED displays dimmer than LCD? "According to DisplayMate, Samsung’s Super AMOLED Galaxy S5 is the brightest display they’ve ever tested, defeating the traditional notion that OLED screens are dimmer than their LCD counterparts. ...Samsung kept using the diamond-shaped subpixel that leads to higher efficiency without the graininess that came from PenTile arrays. The larger blue and red subpixels are diamond-shaped, while the green subpixels are oval, making it easier to squeeze in between the others while maintaining the highest quality possible…" via IntoMobile

Calgary-developed tactile touchscreens: Stevie Wonder tested, CNIB approved "Doug Hagedorn is the founder and CEO of Tactalis (formerly known as Invici), a Calgary startup he launched in 2012 and now includes a half-dozen people on the team. Their technology uses an array of magnets embedded beneath an LCD screen that can be activated and deactivated, corresponding with images on the display. Using a metal stylus or a ring on the tip of the finger, users can then “feel” the images in a dynamic way." via Metro News

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Is Facebook's purchase of heads-up display company Oculus a good or bad thing? "No one seems to have seen the acquisition coming, least of all Oculus itself, which apparently thrashed it out in a matter of days after Zuckerberg decided to take it on. ...But the Rift needed this kind of cash injection to get to the point where its technology would be commercially viable. ...One of the biggest problems is latency between the movement of the headset, and the updated image. 50ms is the maximum, beyond which motion sickness can set in – and advocates suggest that sub-20ms is optimal. Another problem is motion tracking. Unless motion is tracked perfectly, the user's experience of where they are can differ slightly from the image displayed, leading to nausea." via E&T Magazine

Why is Samsung’s breakthrough in graphene research so promising for display technology? "Samsung calls the new method “wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium.” Traditionally, graphene has proven difficult, and therefore expensive, to produce. This has been due almost exclusively to the fact that producing graphene, especially in larger contiguous sheets, required a destructive process to transfer the material from its production environment over to the components it is being used to help build. ...Previous methods required a liquid based transfer of the graphene, but now, the germanium substrate layer that graphene is produced on top of can be re-used for continual growth of graphene, instead of being destroyed in the transfer process." via Android Authority

Why is Apple in talks to buy Japan display chip-maker Renesas "Renesas SP Driver, the largest maker of chips used to control mobile device screens, supplies all three of the companies that make displays for the iPhone, industry sources say: Sharp, Japan Display Inc and South Korea's LG Display Co Ltd. "There's no doubt that, for Apple, the question of who buys Renesas SP is a matter of grave significance," said one Japanese display industry source, who asked not to be identified due to the sensitivity of the matter. Control over the supply chain has become increasingly crucial among smartphone makers. While up to now Apple has relied on outside suppliers for many key parts, Samsung makes vital parts for its Galaxy smartphones, from screens to chips to capacitors, in-house. That gives it greater control over costs, production schedules and specifications, as well as product information." via Reuters

How to stretch a display and maintain pixel resolution "We dream of a single device with a size-variable screen display that can function as a phone, a pad, and a tablet as required. We want a small screen device for voice communications but a large screen when reading text or watching movies on the same device. Several engineering prototypes of so-called rollable or foldable, sometimes multi-axis foldable, screen displays have been demonstrated. The size of the viewing area—thus the device planar area as well—is small when the displays are stored in a rolled or folded form, but can be enlarged when unrolled or unfolded. However, such devices are generally bulky due to the form factor of the rolled or folded screen displays. We considered how to change the size of the screen display and its form factor." via SPIE

Disney Research Pixelbots Tell the Story of the Universe "Three years ago at ICRA in Shanghai, Disney Research presented a prototype for an artistic robot swarm. The swarm was made up of lots of little wheeled robots with LEDs, each of which acted as an individual mobile pixel in a dynamic image made entirely of robots. Disney and ETH Zurich have been refining this idea, developing both software and hardware and adding more robots to the mix. At the ACM/IEEE International Conference on Human-Robot Interaction earlier this month, the latest version of this Display Swarm, now called Pixelbots, reenacted the story of the Universe (video)." via IEEE Spectrum

How Can Stereoscopic Displays Address the Accommodation-Convergence Problem? "The technology discussed by Dr. Bos was a means to use active liquid crystal based eyeglass lenses to address the well-known accommodation-convergence problem found in many stereoscopic display systems. The proposed means to fix the focus problem is, in principle, quite simple: use a camera to determine the “toe-in” of the user’s pupils. Based on this information, determine the distance from the viewer to the virtual object. Add to this the measured distance between the viewer and the display screen and it is possible to determine the power of a lens that can focus the user’s eyes at the proper object distance." via Display Central

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

New Apple tech could revolutionize touchscreens "FTIR [frustrated total internal reflection] uses infrared lights to bounce light off the back of a touchscreen. If there is no interference, or frustration, then the infrared light will completely reflect off the surface of the touchscreen, similar to how the surface of a pool can act as a mirror when viewed at high enough angles. If there is interference from a finger on the touchscreen, then sensors will pick it up in order to determine where the touch input hit the display." via BGR

Atmel, Corning Work On Super Thin Capacitive Touchscreens "This particular collaboration would merge Atmel XSense flexible touch sensors with 0.4mm damage-resistant Corning Gorilla Glass, where the two of them work hand-in-hand to deliver outstanding capacitive touch performance despite having a thinner flat or curved cover glass. It is because of the unique circuit design of XSense that paves the way for design engineers to draw up ever narrower device borders, so that the user would be able to enjoy a more optimal viewing area. " via Ubergizmo

How touchscreens could recognize user 'signatures' "Cybersecurity researchers from the Georgia Institute of Technology have gone a step further. They’ve developed a new security system that continuously monitors how a user taps and swipes a mobile device. If the movements don’t match the owner’s tendencies, the system recognizes the differences and can be programmed to lock the device. The new system is called LatentGesture and was used during a Georgia Tech lab study using Android devices. The system was nearly 98 percent accurate on a smartphone and 97 percent correct on tablets." via Laboratory Equipment

How can open source touchscreens be useful to engineers? "I bought an Arduino Mega and started putting together the custom electronics in the form of a daughter board (Arduino calls them "shields"). However, it needed to be a standalone unit, so what could I do for user interfacing to the Mega that was flexible? Touch screens. Adafruit, a hobbyist site like Sparkfun, offered a 2.8" TFT Touch Shield for Arduino for $59—a second-generation version is now available for $39.95. The libraries are quite easy to use and it gave me the flexibility I needed to make an early prototype of the full system and then refine the safeties once we had some actual test experience with the final hardware." via EDN

What Are Augmented Reality Displays: Their Past and Potential "Computer graphics pioneer Ivan Sutherland established the basic concepts of AR as known today in his seminal 1968 paper “A Head-Mounted Three Dimensional Display”. Sutherland wrote, “The fundamental idea is to present the user with a perspective image which changes as he moves. The displayed material can be made either to hang disembodied in space or to coincide with maps, desktops, walls, or the keys of a typewriter.” Sutherland’s visionary impact is clear when you realize that his work occurred at a time when computer graphics was in its infancy and displays could only render very low-resolution lines. ...On Thursday, May 29, 2014, in Santa Clara, California, the Embedded Vision Alliance will hold its fourth Embedded Vision Summit. Embedded Vision Summits are technical educational forums for engineers interested in incorporating visual intelligence into electronic systems and software." via Electronic Engineering Journal

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

What is haptic capability for tablets? "The news comes from the recent Mobile World Congress 2014 in Barcelona where Fujitsu Laboratories Ltd. (Kanagawa, Japan) demonstrated a prototype tablet with haptic capabilities. ...The introduction of an ultrasonic vibration on the tablet surface creates a high pressure layer of air between the tablet’s surface and the user’s fingertip. This has the effect of reducing friction and creating a floating effect. Utilization of this phenomenon makes it possible to create a slippery sensation on the tablet surface. Up till now, this particular sensation has been difficult to achieve using other techniques." via Display Central

How does a touchscreen display provide blood testing? "But soon, thanks to startup Qloudlab, based in the microengineering lab in Switzerland's EPFL tech university, these patients may be able to use the touch screens on their phones or other devices to test their blood coagulation, all in the comfort of their own homes -- or wherever. ...Using the sensors that can determine where it is being touched (i.e. where the screen's electric field is being disrupted), the screen can detect with incredible precision when and where the blood is moving through those tiny channels across the small surface area where the sticker touches the screen." via CNET

How will digital signage change the dining experience: Pizza Hut introduces digital signage touchscreen menu table "As shown off in its promotional video, the Pizza Hut touch-screen-enabled table concept would allow anyone with an iPhone to sit down and have their identity recognized. That would potentially mean that payment methods, favorite items from the menu and other details could be instantly relayed to the restaurant, as well as any allergies that would mean certain foods wouldn’t be suitable. ...Without a doubt this concept bears a resemblance to Microsoft’s own Surface table, something which never really took off properly, until Microsoft shrunk it down a few feet and turned it into a tablet. (video)" via Redmond Pie

What is digital signage and how can you implement it? "Digital signage is the use of screens in stores to deliver marketing messages and improved shopping experiences to customers. ...Most businesses have small or limited budgets, so it’s advisable to test out options before you invest. A phased approach is a good way to begin experimenting with digital signage. Digital signage and augmented reality can be defined in simple terms as the enhancement of reality. This is often through the digital presentation of information and it can be used on kiosks. It effectively defines the link between 3D and real images and it uses advanced digital imaging techniques." via Internet Marketing Advice

What is Kinoma Create? "Kinoma Create is the JavaScript-powered construction kit for makers, professional product designers, and web developers with no prior hardware experience. With Kinoma Create, you can create personal projects, consumer electronics, and Internet of Things prototypes more quickly and easily than ever before. ...Inside Kinoma Create is a power efficient ARM CPU, Wi‑Fi and Bluetooth connectivity, a capacitive color touch screen, and tons of I/O for sensors — all nicely integrated, all ready to go right out of the box." via indiegogo

What did you think about today's news? Leave a comment here and share your thoughts.

Sunday
Oct272013

Display Technology News Roundup 10.27.2013

Image via Alenia Aeronautica Press Office / The Aviationist

F-35 Program Stops Alternate Helmet Display Development "In a review of the F-35’s flight-test progress in 2011, the Department of Defense identified the HMDS as one of several program risks. It found that the helmet system was deficient in the areas of night-vision acuity, display jitter during aircraft buffeting and image latency from the F-35’s electro-optical distributed aperture system, which combined detracted from mission tasks and the use of the display as a primary flight reference. The Gen 3 helmet “will include an improved night vision camera, new liquid crystal displays, automated alignment and software improvements,” according to the JPO" via AIN Online

Samsung Display begins LCD production in China "Samsung Display, a unit of Samsung Electronics Co, and domestic competitor LG Display are both building multi-billion dollar flat-screen plants in China, to help them compete more effectively against little-known Chinese rivals. Chinese companies such as BOE Technology Group and TCL Corp's LCD unit CSOT are undercutting the world's two biggest LCD makers and winning market share with robust sales to local TV manufacturers." via Reuters

Apple's War on Pixels "Commodification is an inherently boring process, particularly when it comes to technology: over time, products that were once unique and expensive become less so. That process has pushed HDTVs, wireless routers, and Bluetooth speakers into living rooms en masse as the technologies behind them have become more and more generic. One technology most visibly marked by commodification is displays—in particular, high-resolution displays so packed with pixels that human eyeballs cannot perceive the individual dots that make up the image" via The New Yorker

The new manufacturing tech that will bring high-resolution displays to every device "Applied Materials’ three new manufacturing machines should help cut costs by improving quality control and flexibility at multiple points in the production process. The new AKT 55KS PECVD is a Plasma Enhanced Physical Vapor Deposition system that’s designed to better control the amount of hydrogen gas inside the manufacturing chamber, allow for a more uniform distribution of deposited material, and eliminate defects. The other two machines — the AKT PiVot 25K DT and PiVot 55K DT are essentially the same system, but built at two different sizes." via ExtremeTech

Augmented reality system makes cars see-through "Michel Ferreira and his colleagues at the University of Porto in Portugal developed the See-Through System, which uses a lightweight heads-up display to look "through" a truck up ahead. The system works by looking through a camera that records the trailing driver's perspective. Software recognises the back of the lead vehicle, and replaces it with a video feed from a webcam mounted on that lead vehicle." via New Scientist

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Mitsubishi Shuts Down Consumer Video Division "Mitsubishi was always a big player in the RPTV category...,and near the end of its run it created some truly gargantuan rear-projection displays. But the market moved on, wanting flat panels instead of floor standers, and unfortunately Mitsubishi couldn’t refocus fast enough to keep its head above water. So if you liked Mitsubishi’s gear, I’d watch big resellers and liquidators for some serious discounts between now and the holiday buying season." via Technology Tell

Technology to Humanize the Brand "In today’s virtual mannequins, high-resolution optics project a video onto a screen, usually made of cut glass or acrylic shaped in the silhouette of the mannequin speaker and coated with a semi-transparent film. Viewed from the side, the mannequin is only about one cm thick; viewed from the front, the cut-out resembles a person. Improvements on current technology are bringing these mannequins to life. Light efficient projection technology is increasing brightness from today’s average 3000 to 4500 lumens to well beyond 6000 lumens so that the image is crisp and distinctive, even in a brightly lit room." via Wired

Disney tech lets users feel 3D objects on flat screens "Ordinarily, when we feel a bump as we're sliding our finger across a smooth surface, we do so because the increase in friction created by the bump causes the skin in our fingertip to stretch ever so slightly. In order to simulate that friction, the Disney team uses a conductive display in which the electrostatic forces between the finger and the glass can be modulated by applying more or less voltage to the screen." via Gizmag

Semiconductor Will Help Develop Hi-Def Flat Panels "Researchers at the National Institute for Materials Science have developed a pixel switching semiconductor, which will be the key to driving next-generation displays by using an oxide film with a new elemental composition. ...The research results are expected to be effective not only for reducing the power consumption of displays which consume about half of the power in rapidly diffusing smartphones, but also for achieving higher frequencies to realize higher-definition TVs." via Controlled Environments

Does test equipment really need knobs and displays? "Put your tablet wherever you wish. Or remote the display to your laptop that is supporting some humungous monitor. Why settle for the fixed sizes of displays offered by vendors when you can buy high resolution displays at your local electronic retailer larger than your entire lab bench if you wished?Will engineers accept the remote display concept?" via EDN

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

A True Revolution in Display and Touch-screen Manufacturing Begins "Cambrios (Sunnyvale, California) announced the formation of TPK Film Solutions, Ltd. (TPKF), a joint venture with TPK, the world’s largest touch solution provider, and NISSHA, a leader in film-based touch sensors. TPKF’s mission is to “produce ClearOhm silver nanowire-based film in a roll-to-roll process allowing original equipment manufacturers (OEMs) to bring to market cutting-edge touchscreens for new products and applications worldwide,” Cambrios announced in its press release. ...All of this may not sound too exciting until you understand not only that transparent conductors are essential components of most displays and touch screens, but also that ITO has significant limitations." via HDTV Magazine

Nvidia Ends Screen Tearing With G-Sync Display Technology "Conventional LCD monitors have fixed refresh rates, typically 60hz, which the GPU must work with, but with G-Sync, a module goes inside the monitor that transfers control of the refresh rate to the GPU. Because the display adapter controls the timing, the two are always synchronized, eliminating screen tearing without sacrificing performance." via The Escapist

Honeywell Nearing Launch Of Touchscreen-Enabled Avionics "Along with qualitative assessments of the pilots’ workload, researchers used electromyogram measurements of muscle activity to gauge the pros and cons of mounting locations and touch technologies. The researchers confirmed that the best fit for touchscreen displays on large flight decks for high-end business jets or air transport aircraft is on the center console, or pedestal. “From a pilot workload perspective, if you put touch there, that’s the best place for it. In a smaller flight deck, pilots are used to looking at bezel buttons and knobs on the forward displays, so touch makes more sense there.”" via Aviation Week

Robotic testing finds touchscreen inaccuracies at edge of iPhone display "Using a robotic finger and a specialized suite of test software, Finnish automated testing company OptoFidelity found that Apple's latest handsets accurately detect touch inputs only across a small swath of their displays, roughly equating to the location of the on-screen keyboard. The iPhone 5s and 5c, according to the company, suffer from "extremely bad" touch performance near the edges of the display." via Apple Insider

New multi-touch sensor is customizable with scissors "Together with researchers from the MIT Media Lab, they developed a printable multi-touch sensor whose shape and size everybody can alter. A new circuit layout makes it robust against cuts, damage, and removed areas. The researchers have presented their work at the conference “User Interface and Technology” (UIST) in St. Andrews, Scotland. The sensor remains functional even when cut to a different shape." via R&D Mag

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

Tourist site desperate to stop graffiti adds vandal-friendly touchscreens "Officials in Wuhan's Yellow Crane Tower Park are determined to stop name-etching vandals once and for all, and have rolled out a series of graffiti-welcoming touchscreen displays. Now well-behaved and asshole tourists alike can enjoy the thrill of leaving their marks on priceless antiquities." via Shanghaiist

Existing Inside the Screens "In his TED Talk, Reach into the computer and grab a pixel, Dr. Lee shows some current projects and discusses future possibilities. The talk begins with discussing the boundaries between the user and the screen, and throughout the talk the boundary gets smaller until it no longer exists." via Engineering.com

Wheel-Shaped Molecules Better For Displays "Whereas the usual rod-shaped LEDs can trap up to 80 percent of light generated because light flows from them in only one direction -- known as polarization -- Lupton and his team made a molecule that is "perfectly symmetrical, and that makes the light it generates perfectly random,” he said in a university news release, noting the new organic molecule is known as OLED." via International Business Times

Worlds Largest e-Paper Sign Displayed at UN Headquarters "e-Ink has set a worlds record for the latest e-Paper sign that is installed at the UN Headquarters in New York. The eWall is an intricate combination of architectural, display and network engineering. It stands about 6 meters wide with 231 tiled 7.4″ displays arranged in a grid of 33 displays across by 7 displays high. With an overall resolution of 26,400 x 3,360 pixels, it is perfect to read at long and short distances." via Good Reader

Aerial Imaging Plate turns holograms into touchscreens "Much like a low-quality monitor with a very narrow viewing angle, the AIP’s holographic effect can only be viewed from a very specific location in relation to the projected image. To onlookers, it appears as a regular flat surface, but to a person standing in the sweet spot, the image looks as though it’s floating in the air. In what may seem like a classic case of “it’s a feature not a bug,” Asukanet feels the specific viewing angle requirement is appealing, perhaps as a privacy feature, even though onlookers can see what’s happening on the flat display." via ExtremeTech

What did you think about today's news? Leave a comment here and share your thoughts.

Tuesday
Sep102013

Display Technology News Roundup 9.10.2013

Image via Qualcomm

Qualcomm Toq: The Anti-Galaxy Gear Smartwatch "Qualcomm has been working on its Mirasol technology for years. To date, it hasn't been very successful in winning adoption of the low-power screen tech. The Toq could change that. The Toq is probably the highest profile proof-of-concept Qualcomm could have created to show off its mobile screen cred. Thanks to the screen technology, Qualcomm says the Toq can go several days between charges." via InformationWeek

Research of highly rugged and lightweight liquid crystal displays "Together with national and international industry partners, scientists at the University of Stuttgart have started the development of very robust and extremely lightweight displays within the research project LiCRA. Instead of common glass substrates these displays are based on plastic foils what makes them flexible. The overall market for rugged displays is estimated to a total of seven billion (milliard) US$ until 2015." via Printed Electronics World

A Faster Liquid Crystal "The brightness of a pixel in a typical flat screen display is regulated by an electric field that controls the orientations of molecules of a liquid crystal. In Physical Review Letters, researchers report a much faster way of using the field to change the state of the molecules and alter the light transmission. Although the measured effect is small, it is thousands of times faster than the conventional technique and might be increased enough to allow new design options for displays." via APS Physics

LG Display Develops World’s First Intel® WiDi Enabled LCD Panel for Monitors "LG Display succeeded in developing a panel that provides Intel® WiDi solution by building in a key chipset directly into the LCD module. With this cutting-edge LCD panel embedded with Intel® WiDi solution, LG Display enables users to enjoy quality images with an easy and convenient access to Intel® WiDi technology without the use of additional devices, as well as facilitate OEMs and monitor makers nimbly and cost-effectively adopt this advanced technology." via LG Display Newsroom

Taiwanese take early lead in UHD LCD-TV panel market ""Most television brands are counting on UHD sets-with their astounding 3,840 by 2,160 resolution-to rejuvenate sales," said Sweta Dash, senior director, display research and strategy for IHS. "That's why the Taiwanese suppliers are focusing heavily on meeting early demand for UHD LCD panels. Meanwhile, South Korean suppliers LGD and Samsung have turned their attention to a different technology: the active matrix organic light emitting diode (AMOLED) panel, which they believe represents the next generation of television."" via CIOL

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Apple bucks the PC OEM trend and increases demand for LCD panels "In real terms, panel shipments in July totaled 14.9 million units, down from 19.3 million during the same month in 2012, claims a new report by IHS. ...Of the top panel buyers only one company increased demand, and that was Apple. According to IHS, the Cupertino company increased panel demand in order to be able to keep up with demand for the MacBook Air." via ZDNet

Gesture-based UI boosts proximity sensor market ""The Galaxy S4 from Samsung Electronics represented the first major push towards gesture interface capability in a handset when the smartphone was released this year," said Marwan Boustany, senior analyst, MEMS & Sensors, for IHS. "This is a step that others in the industry are likely to follow, thanks to the rising availability of gesture solutions from suppliers like U.S.-based Maxim Integrated Products and soon from both Japan's Sharp and Taiwan-based Capella Microsystems."" via EET India

Challenges involved in modernising an aircraft's avionics suite "For example, two H-model C-130 Hercules aircraft, originally built in the 1970s, and two stretch variants built in the 1990s, recently underwent extensive avionics modifications in Cambridge. At the heart of the programme was the installation of a Communications, Navigation, Surveillance/Air Traffic Management (CNS/ATM) compliant Flight Management System (FMS) and display and surveillance systems. The display system consists of six flat panel displays which incorporate the functionality of the many original electromechanical displays and the surveillance systems, including Enhanced Traffic Alert and Collision Avoidance System (ETCAS - which is mandatory for aircraft entering controlled airspace) and an Enhanced Ground Proximity Warning System. However, the aircrafts' original analogue autopilot systems had to remain, which meant employing signal converters so that old could interface with new." via New Electronics

Implications of passive stylus on large capacitive touchscreens "Passive stylus detection is a complex problem for touch engineers, with the root of the problem being the stylus paradox. The stylus paradox is that the signal profile for a passive stylus is several times smaller than that of a normal touch inut, but the fine point of the stylus makes the user believe that it will be more accurate. Accuracy and linearity are proportionally related to the signal to noise ratio of the system." via EDN

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Two new features for electrophoretic displays? "The new Amazon Kindle Paperwhite will be the first product to incorporate Carta displays. Compared to Pearl, Carta promises higher reflectance and better contrast. What attracted my attention however was something that went completely unnoticed: on the specification sheet, E Ink now says an image update can be done in only 120 milliseconds." via Printed Electronics World

Researchers explore haptic technology beyond touchscreens "One of the critical challenges in developing touch systems is that the sensation is not one thing. It can involve the feeling of physical contact, force or pressure, hot and cold, texture and deformation, moisture or dryness, and pain or itching. "It makes it very difficult to fully record and reproduce the sense of touch," said Wang. As noted in the article, there has been significant progress on the development of flexible and sensitive pressure sensors, as well as tactile feedback displays for specific applications such as for remote palpation that could be used during laparoscopic surgery." Phys.org

When do interactive touchscreen displays make sense in the newsroom? "What most newsroom touch installations lack, is a clear vision of how this technology can be important for their audience. In many cases, engineers seem to have simply transitioned traditional on-air graphics onto a touch screen. Instead of some off-camera person triggering graphics on cue, the host triggers the graphics by touching points on the display. This can be pointless or profound depending on how it is implemented." via CGW

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

World-first smart fabric screen-printed electroluminescent watch display "The watch display is printed directly on to fabric to achieve the world’s first printed smart-fabric watch. The watch is printed layer by layer using screen-printable pastes with electronic functionality such as conduction, insulation and electroluminescence. The electroluminescent displays were printed by Marc using the thick-film printing facilities in the Southampton Nanofabrication Centre cleanroom." via University of Southampton

The LG G Pad will use GF2 display technology "One of the first manufacturers to use a film-based touch panel was Apple, on the iPad mini. According to the WSJ, the same tech will allow the Cupertino company to make the iPad 5 lighter and thinner than previous generations. If this report from Korea Herald is accurate, LG will benefit from the same advantages by using a GF2 film-based panel on the G Pad." via Android Authority

EU Adjusts Tariff On Flat Panel Displays "At present, a duty rate is applied on imports of flat panel displays not used exclusively for automatic data-processing (ADP). The reform will mean that displays using signals from ADP machines will be able to receive duty free treatment on an autonomous basis." via Tax-News

Optical touchscreens benefit from compact, high-power infrared LEDs "Optical solutions are now on the march, particularly for large displays. Their benefit lies in the excellent image quality because they do not need any special coatings that absorb a certain percentage of the backlighting. They can detect any type of pointer or stylus and even fingers in gloves because they are not reliant on the conductivity of these objects. Optical designs are also not at all sensitive to scratches and, depending on the power of the emitters, can be used for any size of screen." via LEDs Magazine

'Fake skin' computer touchscreen may aid cancer diagnoses "Ms Jess Tsimeris, of Bruce, is working with electromagnetic forces, using magnets to raise and lower soft latex surfaces. She has created soft touch surface with lumps that can be moved around and made firmer, or less firm. ...Supervisor Tom Gedeon said research in the field could also lead to more secure key pads at ATMS, using a squishy surface where a user was identified by how hard they pushed." via Canberra Times

Elon Musk demonstrates Iron Man style fabrication interface "Armed with a Leap Motion controller and few of today's mainstay 3D display technologies, Musk really has created something that roughly resemble's the interactive displays in Iron Man — though it admittedly looks like a Mark 1 model. In the video below, Musk takes you through the evolution of his interface." via DVICE

Apple researching display tech that can independently adjust appearance of UI elements "To efficiently recognize and change each element, the system looks at color saturation, or more specifically, saturated pixels versus non-saturated pixels. In one embodiment, the non-saturated pixels are associated with areas that don't hold active content, and therefore show the most change when display adjustments are made." via Apple Insider

What did you think about today's news? Leave a comment here and share your thoughts.

Friday
Jan252013

Display Technology News Roundup 1.25.2013

Image via Zebra Imaging

3D holograms assist battle preparation "Holographic maps developed by Zebra Imaging (Austin, TX) and sponsored by a US Army contract allow soldiers to view three-dimensional (3D) landscapes and cityscapes prior to entering a battle zone. The technology, which has other uses in both military and civilian applications, relies on software that converts light detection and ranging (lidar) data into an up to 24 × 36 sq-in. rollable laser-written holographic display that can be observed using a simple flashlight, without the need for special viewing glasses or goggles." via Laser Focus World

How an E-ink Screen is Made (video) "The following video shows the CMO of E-ink, Sriram Peruvemba, as he explains the steps involved in making an E-ink screen. " via The Digital Reader

Electrowetting displays: Brighter than LCD, lower-power, and daylight readable "In an electrowetting display, a small blob of black oil takes the place of liquid crystal. In its base state, the black oil is opaque and doesn’t let any light through. Apply some electricity, the electrowetting of the substrate increases, the oil becomes a tight bead — and voila, lots of light passes through. Repeat this for all three RGB subpixels and you have a computer display." via Extreme Tech

Texas Instruments wants LCDs out of cars "The LCD touch screen has become commonplace in cars, but the technology suffers from limited shaping. Texas Instruments used its Digital Light Processor (DLP) technology to come up with a display that could take a wide variety of shapes in the car, and allow touch control for people wearing gloves." via CNET

Display database for engineers Search thousands of display panels by multiple characteristics and compare results side-by-side using the display database multisearch.

Acer denies making touchscreen alliance "He said neither the company nor its chairman are involved in assembling a touchscreen industry alliance in Taiwan. The Chinese-language Economic Daily News reported yesterday that Acer chairman and chief executive officer Wang Jeng-tang was organizing the nation’s first touchscreen industry alliance to take on industry rivals such as Samsung Electronics Co of South Korea."via Taipei Times

Touchscreen restaurant table forecasts the end of human interactions "Moneual has unveiled a design for a touchscreen cafe table that can display apps to help diners browse and order off the menu. ...Designed to feature touchscreen menus, order placement interface, and payment options, the Touch Table would be the one stop shop for cafe-goers to enjoy a Seamless-esque experience by interacting solely with computers and minimally with humans." via Digital Trends

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Touch Screens Moving Beyond Smartphones and Tablets "The current trend of using iPads or other multi-touch tablets with dedicated apps for certain specific purposes may be innovative, but it won't be sustainable or economically scalable beyond a point. It is here that the necessity for dedicated multi touch devices comes into the picture. There is massive potential in this arena, and companies like Sollensys are leading the way forwards. " via Huffington Post

PaperTabs electronic paper expected to replace computers "PaperTabs, created at Canada's Queen's University in partnership with Intel Labs and Plastic Logic, look similar to sheets of paper with black printing. But PaperTabs are actually flexible computers powered by the latest Intel chips with 10.7-inch touchscreens and the ability to interact with other pieces of electronic paper. Lay one PaperTab beside another and they can work together to display a larger image, for example. PaperTabs can also be used simply to read large documents, with users bending the PaperTab each time they wish to virtually flick to the next page." via Perth Now

Xbox display technology turns your room into a ‘holodeck’ of sorts "Microsoft gave a demonstration of a new research project called Illumiroom that fills a room with lights and images that coincide with what’s being shown on a TV screen. The experimental display tech uses Xbox Kinect — in conjunction with a projector — to scan the appearance and geometry of the room." via Venture Beat

Are you an engineer or have display expertise? Email jason@displayalliance.com to be featured in the interviews section.

Cockpit display innovators to convene at Avionics Europe 2013 "“Few humans would disagree that of our five senses, sight and touch are perhaps the most important. Avionics displays embody sight and touch via an increasingly important role for pilots, crew, passengers, and maintenance personnel alike,” affirms Vance Hilderman, president of Atego HighRely. ...Avionics Europe 2013 will take place 20 and 21 Feb. 2013 in Munich." via Avionics Intelligence

Inventing DualView: Displaying two images at the same time "The technology’s origins lay in 3D – specifically glasses-free 3D, most recently seen in Nintendo’s 3DS and 3DS XL handheld games console. Much like the 3DS, DualView combines a normal LCD with parallax barrier technology, displaying two pictures simultaneously by separating the direction of light from each pixel into two directions. But unlike glasses-free 3D, which tricks the eyes into seeing a single three-dimensional image by layering two 2D images, DualView uses the tech to display two 2D images simultaneously." via Humans invent

£25M Graphene R&D Centre With Backing from Nokia, Plastic Logic & Others "Material scientists and nanotechnologists get very excited about the potential of graphene — a one-atom-thick sheet of bonded carbon atoms which is exceptionally strong, lightweight and flexible and is a better conductor than silicon – but they are not the only ones to see huge potential in it. Nokia, Plastic Logic, Philips, Dyson, and BaE systems are among more than 20 industry partners who have pledged £13 million worth of support for a new graphene R&D centre to be established at Cambridge University. ...The new Cambridge Graphene Centre aims to develop graphene from a material with a lot of raw potential — researchers have already been looking at how graphene could improve battery capacity, and exploring its water-repelling properties — to a point where it can “revolutionise flexible, wearable and transparent electronics”." via Tech Crunch

Will Samsung use diamond or hexagonal sub pixels in their new AMOLEDs? "Reportedly, Samsung are developing hexagon and diamond shaped pixels. This means that Samsung will increase the resolution but the picture will suffer due to jagged pixel artifacts and blurring. It's probably that at such high pixel density this won't actually be noticed, but still." via OLED-Info

A Dual-Screen Smartphone "But it seems to me like the most clever, the most innovative, the most useful way to employ double screens is also the most obvious one: to turn your smartphone into a tablet. What I want–what everyone wants, I think–is the screen real estate of a tablet, with the convenience of a device that fits in your pocket. The trend right now is to try to find a middle ground with tablet-phone hybrids called “phablets” (see “Review: Galaxy Note”). The only problem: phablets are often awkward." via MIT Technology Review

Is Apple changing its mind on touch panel structures? "Calvin Hsieh, senior analyst at DisplaySearch, cites a report from China that Innolux has delivered "touch on display" samples for the iPhone, another China report that Innolux and AU Optronics have provided "one-glass solution" (OGS) samples for the iPad Mini, and his firm's own analysis that the iPhone 5 uses in-cell touch technology but the iPad mini uses a glass/film dual ITO (GF2, or DITO) structure. With both those processes struggling to attain good yields, could Apple end up changing its display technology adoption midstream?" via Solid State Technology

Plasmag Technology successfully develops TCP film "EDN quoted representatives of Plasmag as stating the technology has a simplified production process and low cost advantages over ITO films. EDN also quoted market observers stating they believe the technology will replace ITO film in the future for conductive touch screen materials, most notably for use in tablet products." via DigiTimes

What did you think about today's news? Leave a comment and share your thoughts.

Wednesday
Dec122012

The Display Industry News Roundup For 12.12.2012

Image via CNET / Sean John / Macy's / Recom Group

Would you wear a video display on your sleeve? "The display comes from Recom Group and was discovered at geek heaven, also known as the Consumer Electronics Show. ...The concept is a bit geeky but intriguing. Right now, I can't imagine walking around with a glowing screen on my sleeve, but then again five years ago, I'd never imagine a cell phone as my most faithful palm companion." via St. Louis Post-Dispatch

New Touchscreen Capable of Working in Bright Light "The key innovation behind hybrid tracking is that instead of blocking the infrared light emitted by external sources, it embraces it. This is implemented by tracking shadows of the external infrared light and combining that information with reflections that the built-in infrared sensors 'see' through the LCD." via Digital Signage Connection

Continuously Falling Notebook PC Panel Prices "Tablet PCs continue to capture consumers’ favor, as those who care more about content consumption than creation value portability and convenience, and thus tablet PCs are taking share from traditional clamshell notebook PCs. At the same time, economic concerns have hampered enterprise IT spending, which hits notebook PCs in particular." via DisplaySearch Blog

Samsung to reveal some exciting new tech at CES 2013? "They may unveil the new display used in this phone - perhaps the rumored 5" Full-HD AMOLED panel. Some say that Samsung will unveil a flexible panel, but I think it's quite unlikely." via OLED-Info

How electronic parts distribution and the LCD industry are changing "The electronic parts industry boomed in the 1990s and early 2000s, but major industry changes are forcing companies to adapt. In those days, middlemen such as parts brokers thrived on wide profit margins for parts and direct access to manufacturers in Asia. It was a simple formula: find buyers and sellers of parts and turn part numbers into profits. But profit margins on electronic parts have eroded with improved manufacturing and lower costs." via Display Alliance

Display database for engineers Search thousands of display panels by multiple characteristics and compare them side-by-side using the display database multisearch.

Special Interest Group for Stereoscopic 3D in Education (SIG3D) "The new SIG3D group’s aim is to improve learning and teaching through communication and collaboration between its members, providing professional development and resources for the effective implementation of educational stereoscopic 3D technologies as well as showcasing high-quality applications, pertinent research and instructional best practices." via 3D Vision Blog

Holographic Television at the MIT Media Lab "Research since the early 1960s has attempted to build true holographic television, but until very recently the prospect has seemed distant. The authors' group has for several years concentrated on developing holographic displays suitable for consumer applications, adding constraints of mass manufacturability, low cost, and compatibility with mass-market computational resources such as might be found in PCs or game consoles. A resurgence of consumer interest in 3-D displays, combined with several relevant technological developments, makes this an opportune time to explore re-imagining holographic displays as part of a home in the near future rather than in fictional spacecraft in the far-off future." via The Society for Information Display

Apple Patent A Reminder That It’s Working On Google Glass-Style Wearable Tech, Too "Apple’s vision is still more focused on wearable media delivery, versus the AR-type features that Google is making the central feature of its Project Glass device, which is also where Microsoft seems to be headed according to its own recent patent filing. But all of these massive tech companies are clearly trying to plant their flags for the next stage of mobile tech, which begins to look increasingly like it’ll take the form of something we wear, not something we carry." via TechCrunch

Do you have content to share with Display Alliance? Anyone can post press releases, white papers, commentary, videos, and more in the open section.

Samsung To Introduce Unbreakable Display For Next Gen Galaxy S IV "According to Reuters, Samsung is a frontrunner in developing unbreakable screens. That's because Samsung has a big interest in OLED (organic light-emitting diode) displays, and a feature of OLED panels is that plastic material can replace glass substrate." via Hot Hardware

Video: Fraunhofer's COMEDD OLED program "The Fraunhofer's COMEDD published a new video explaining all about COMEDD and its activities and the OLED production process." via OLED-Info

China FPD Conference "SEMI today announced that the 2013 China FPD Conference and ASID will be held concurrently in Shanghai for the first time. ...According to NPD DisplaySearch spending on manufacturing equipment for flat panel displays is forecast to rise 121 percent from $3.8 billion in 2012 to $8.3 billion in 2013. ...DisplaySearch forecasts that the majority of FPD equipment spending in 2013 will be used for new low temperature polysilicon (LTPS) fabs and fab processes for use in both TFT LCD and AMOLED (active matrix OLED) displays. FPD China will bring together the leading buyers, specifiers, engineers, suppliers and other key players to discuss and plan the next stage of China's display industry growth." via Solid State Technology

In pixel wars, LCD has staying power, refuses to die ""OLED still has a long way to go to become a mainstream display, as it has to become bigger and improve picture quality," said Chung Won-seok, an analyst at HI Investment & Securities. "The use of OLEDs will continue to be confined to small displays at least for the next 2-3 years. Its usage as a mainstream TV panel is only likely in 2014, but even then there's a possibility of intense competition with LCD TVs as that technology keeps improving."" via Hindustan Times

OLED TV Prices May Be Lowered By New Polymer Development "For years, indium has always been viewed as the most ideal material for anodes, due to its conductive and transparent properties. But times have changed, and with the material become increasingly more expensive and difficult to obtain, researchers have been forced to try and come up with an alternative. ...Scientists working together at Iowa State University’s Microelectronics Research Center and the US Department of Energy’s Ames Laboratory believe they have finally hit on to something: a 15-year old polymer poly (3,4-ethylene dioxythiophene):poly (styrene sulfonate), known more simply as PEDOT:PSS." via HDTVtest

Are you an engineer or have display expertise? Email jason@displayalliance.com to become a featured contributor in the Display Alliance knowledge base.

Touch screens go optical "The capacitive touch screen, which works by changing the local capacitance of metallic layers in the screen, reacts to very light touches and is durable but expensive to manufacture. Resistive touch screens, where conducting layers are separated by a flexible material that is compressed locally on touch, are cheaper but delicate to fabricate, especially for larger sizes. ...We devised a touch screen where light is confined in a waveguide that reacts to touch." via SPIE

Why would someone repair an LCD rather than buy a new panel? "On the other hand repairing the LCD panels is very useful for the manufacturers, because they usually get a shorter warranty period for the LCD panel than they provide to the end customer. Thus, they carry the expenses resulting from this discrepancy. The price of the repair of an LCD panel in Elsin is about 20-50% of the price of a new panel. Therefore, the total saving at mass production level is significant." via Display Alliance

USPTO may invalidate another of Apple's key multitouch patents "US Patent #7,479,949, claiming a "[t]ouch screen device, method, and graphical user interface for determining commands by applying heuristics," essentially covers iOS's ability to respond when a user is trying to scroll vertically in a document, or trying to move around within the document in multiple directions. It also covers iOS's ability to discern the difference between swiping among images in a gallery, or panning or zooming within the image. The patent is sometimes referred to as the "Steve Jobs patent," as Jobs' name is listed first among the many Apple engineers cited as inventors of the patented claims." via Ars Technica

One step closer to telepathy with BCI technology "...brain-computer interface technology (BCI) has brought us one step closer to making direct brain-to-brain communication a reality. ...What Professor James has done is record the activation pattern in the visual cortex of one individual, use a computer to convert this activation pattern into flashing LED lights of different frequencies and transmit these light patterns to the brain of another person. The result is that the second individual “sees” what the first was imagining." via Neuro Gadget

Digital Display Technology: An Introduction to Digital Signage "What kind of display will best meet the deployment needs: plasma or LCD? What are the pros and cons of each? How will digital technology change in the next five, 10 or 20 years? What about terminology — what is the language of digital technology?" via Self Service World

What did you think about today's news? Leave a comment and share your thoughts.

Tuesday
Nov062012

The Display Industry News Roundup For 11.6.2012

Image via The Digital Reader

Project Vivit Shows Off Video Playing on Color E-ink Screen "Okay, seeing the video in color is kinda interesting, but in the long term it doesn’t have much use. The low-power benefit of E-ink screens is lost when you have to refresh the screen 30 times a second. And the quality and resolution of the video is much lower than you would find on most any LCD screen." via The Digital Reader

iPad Mini Display Under The Microscope "Repair Labs says that the pixels of the 4th-gen iPad are 16 percent larger relative to the iPad mini than the iPad 2, making the difference between the two screens less noticeable, and in fact, “to the naked eye, it’s negligible,” the gadget repair site says." via Tech Crunch

Yole Développement sees a $1.7 billion OLED lighting market in 2020 "Yole says that traditional lighting makers will not choose to invest in OLED mass production - as the costs are high and the production difficulties are numerous. OLED lighting development will therefore depend on bottom of the supply chain companies that will need to offer more vertical integration." via OLED-Info

University of Tokyo turns real paper and ink into a display "The division's new research has budding artists draw on photochromic paper with Frixion's heat-sensitive ink, turning the results into something a computer can manipulate. A laser 'erases' the ink to fix mistakes or add effects, and an ultraviolet projector overhead can copy any handiwork, fill in the gaps or print a new creation." via Engadget

Do you need display panels? Email jason@displayalliance.com to source with Mass Integrated, Inc.

New E-Reader Display Aims at Video and Color "Of course, the liquid crystal displays on tablets already show color, but they do so by shining colored lights out of the screen. E-readers, on the other hand, create colors by reflecting incoming light. They use much less power, are easier to read in sunlight and are thinner than LCDs." via Live Science

LCDs, Aperture Ratios, and Hummingbirds "The area ratio of the opaque transistor and the transparent electrode is a key metric called the aperture ratio. So let’s make the transistors smaller. Obvious, right? Easier said than done." via Applied Materials

LTPS AMOLED is Coming on Gen 8 "In the production tool, the laser beam is optically broadened to a line that can be as large as 1300mm, and is swept along the substrate in the long direction (see figure). The 55-inch displays are produced 6-up in a 3×2 matrix. The line beam makes one pass from the top and one from the bottom, so the sweep edge does not cross any display and stitching in not needed." via Display Central

Applied Materials unveils new PVD, PECVD tools for display manufacturing "The Applied AKT-PiVot PVD for metal oxide-based thin-film transistors (TFTs) enables a transition from aluminum to copper interconnect bus lines leading to faster pixel response and lower power consumption in LCD TV panels. It overcomes the problem of "mura effect" that reduce display quality, which the company says has hindered metal-oxide technology's inroads into mainstream LCDs. The "breakthrough" stability of the IGZO films deposited by the tool offers the promise of metal oxide backplanes for OLEDs which would significantly lower their cost as well, the company adds." via Solid State Technology

Why bigger is better for FPD recovery and growth "“The average diagonal sizes of key FPD applications have increased over the past three years, and every inch of growth in flat panel display applications results in growth in area demand and thus capacity utilization,” points out David Hsieh, VP of Greater China Market Research for NPD DisplaySearch. Consumers won't want to go back to smaller displays and lower resolutions, so average (diagonal) sizes will accelerate in 2013, spurring long-term growth for the entire flat-panel display industry." via Solid State Technology

Do you have news to submit to Display Alliance or want to be interviewed about your expertise in the display industry? Email jason@displayalliance.com.

Research to expedite LCD monitor recycling "Recycling LCDs currently entails a high labour cost because mercury in the back of LCDs requires proper disposal. Without recycling, LCDs are incinerated using expensive emission control equipment or are discarded in landfills where their potentially hazardous materials may contaminate the soil and water. The units also contain gold and indium tin oxide, which are valuable and scarce resources but are difficult to extract. The project is funded by a US$ 15 000 grant from the US Environmental Protection Agency’s P3 project." via Recycling International

Patent Issued for LCD Panel Having Improved Response ""The present disclosure relates to reducing response time, decreasing driving voltage and/or increasing transmittance of an LCD. In accordance with the present disclosure, the LCD may include a liquid crystal layer having liquid crystal molecules. A chiral dopant may be dispersed within the liquid crystal layer and configured to bias the liquid crystal molecules toward a twisted state that facilitates light passage through the LCD. Such a configuration may reduce response time and/or decrease driving voltage. ..." via Equities.com

iTomb design offers mourners touchscreen tributes from the grave "The iPad – inlaid into a stone slab – is powered using solar energy and comes with a protective cover to ward off the elements and theft." via Macworld

Sharp is on the verge of collapse, IGZO technology remains only hope for survival "It was not, however, the smartphone venture that caused so much trouble; it was the company’s overzealous turn to produce LCD panels for large TV screens. As part of the company’s restructuring plan, it will turn its focus on the booming smartphone and tablet market and product small- to medium-sized LCD panels keeping IGZO (named after indium gallium zinc oxide semiconductor) technology aboard. IGZO is believed to be a power-saver but what if other companies, like LG and Japan Display, could develop a display technology better than what Sharp offers?" via The Droid Guy

Electrofluidic imaging e-paper has no pixel borders "In current electrowetting displays (devices that use electricity to move pigmented fluids around), colors maintain their image-forming distinctiveness via pixel borders that ensure that the pixel's color does not bleed over into the next pixel or color. This matters because pixel borders are dead areas that dull any display of information, whether a display of text or image. Leading electronics companies have been seeking ways to reduce or eliminate pixel borders to increase display brightness." via Laser Focus World

New Ideas in Digital Signage "The visceral adoption of tap, swipe, and zoom interactivity has set the stage for how people will interact with digital signs. Beyond simple touch interaction, scan, RFID, and NFC will deliver personalized information to displays and even grant or deny entry access to users interacting with electronic room signs." via AV Network

What did you think about today's news? Leave a comment and share your thoughts.